Advertisement

Parameterized Tree Systems

  • Parosh Aziz Abdulla
  • Noomene Ben Henda
  • Giorgio Delzanno
  • Frédéric Haziza
  • Ahmed Rezine
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5048)

Abstract

Several recent works have considered parameterized verification, i.e. automatic verification of systems consisting of an arbitrary number of finite-state processes organized in a linear array. The aim of this paper is to extend these works by giving a simple and efficient method to prove safety properties for systems with tree-like architectures. A process in the system is a finite-state automaton and a transition is performed jointly by a process and its parent and children processes. The method derives an over-approximation of the induced transition system, which allows the use of finite trees as symbolic representations of infinite sets of configurations. Compared to traditional methods for parameterized verification of systems with tree topologies, our method does not require the manipulation of tree transducers, hence its simplicity and efficiency. We have implemented a prototype which works well on several nontrivial tree-based protocols.

Keywords

Transition System Constraint System Safety Property Reachability Analysis Tree Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abdulla, P., Henda, N.B., Delzanno, G., Haziza, F., Rezine, A.: Parameterized tree systems. Technical Report 2008-010, Dept. of Information Technology, Uppsala University, Sweden (March 2008)Google Scholar
  2. 2.
    Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.-K.: General decidability theorems for infinite-state systems. In: Proc. LICS 1996, 11th IEEE Int. Symp. on Logic in Computer Science, pp. 313–321 (1996)Google Scholar
  3. 3.
    Abdulla, P.A., Delzanno, G., Rezine, A.: Parameterized verification of infinite-state processes with global conditions. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 145–157. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Abdulla, P.A., Jonsson, B., Mahata, P., d’Orso, J.: Regular tree model checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J.: Regular model checking made simple and efficient. In: Brim, L., Jančar, P., Křetínský, M., Kucera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 116–130. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Abdulla, P.A., Jonsson, B., Nilsson, M., d’Orso, J., Saksena, M.: Regular model checking for s1s + ltl. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 348–360. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Abdulla, P.A., Legay, A., d’Orso, J., Rezine, A.: Tree regular model checking: A simulation-based approach. The Journal of Logic and Algebraic Programming 69(1-2), 93–121 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Alur, R., Brayton, R.K., Henzinger, T.A., Qadeer, S., Rajamani, S.K.: Partial-order reduction in symbolic state space exploration. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 340–351. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  9. 9.
    Boigelot, B., Legay, A., Wolper, P.: Iterating transducers in the large. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 223–235. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Bouajjani, A., Habermehl, P., Vojnar, T.: Abstract regular model checking. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 372–386. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.: Tree Automata Techniques and Applications (October 1999)Google Scholar
  14. 14.
    Dams, D., Lakhnech, Y., Steffen, M.: Iterating transducers. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Godefroid, P., Wolper, P.: Using partial orders for the efficient verification of deadlock freedom and safety properties. Formal Methods in System Design 2(2), 149–164 (1993)CrossRefzbMATHGoogle Scholar
  16. 16.
    Higman, G.: Ordering by divisibility in abstract algebras. Proc. London Math. Soc (3) 2(7), 326–336 (1952)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    IEEE Computer Society. IEEE standard for a high performance serial bus. Std 1394-1995 (August 1996)Google Scholar
  18. 18.
    Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking with rich assertional languages. Theoretical Computer Science 256, 93–112 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Kruskal, J.: Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjecture. Transactions of the American Mathematical Society 95, 210–225 (1960)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program verification. In: Proc. LICS 1986, 1st IEEE Int. Symp. on Logic in Computer Science, June 1986, pp. 332–344 (1986)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2008

Authors and Affiliations

  • Parosh Aziz Abdulla
    • 1
  • Noomene Ben Henda
    • 1
  • Giorgio Delzanno
    • 2
  • Frédéric Haziza
    • 1
  • Ahmed Rezine
    • 1
  1. 1.Uppsala UniversitySweden
  2. 2.Università di GenovaItaly

Personalised recommendations