Crossed-Line Segmentation for Low-Level Vision

  • John Atkinson
  • Claudio Castro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5001)

Abstract

This work describes a new segmentation method for robotic soccer applications. The approach called crossed-line segmentation is based on the combination of region classification and a border detector which meet homogeneity criteria of medians. Experiments suggest that the method outperforms traditional procedure in terms of smoothing and segmentation accuracy. Furthermore, existing noise in the images is also observed to be reduced without missing the objects’ borders.

Keywords

Color-based Segmentation Robotic Vision BLOBs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: Proceedings of IROS-2000 (2000)Google Scholar
  2. 2.
    Chalup, S., Middleton, R., King, R.: The nubots’ team description for 2005. In: RoboCup 2005: Robot Soccer World Cup VII (2005)Google Scholar
  3. 3.
    Chalup, S., Creek, N., Freeston, L., Lovell, N., Williams, M.-A.: When the nubots attack! - the nubots 2002 team report. Technical report, Newcastle Robotics Laboratory, The University of Newcastle, Australia (2002)Google Scholar
  4. 4.
    Michaela, F., Chalup Stephan, K., Oliver, C., Coleman Oliver, J., et al.: The nubots’ team description for 2003. In: RoboCup 2003: Robot Soccer World Cup V (2003)Google Scholar
  5. 5.
    Hong, W., Georgescu, B., Zhou, X.S., Krishnan, S., Ma, Y., Comaniciu, D.: Database-guided simultaneous multi-slice 3d segmentation for volumetric data. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Horowitz, S., Pavlidis, T.: Picture segmentation by a direct split-and-merge procedure. In: Int. Joint Conf on Pattern Recognition, pp. 424–433 (1974)Google Scholar
  7. 7.
    Quinlan, M.J., Chalup, S.K., Middleton, R.H.: runsiwft teamp description paper 2003. In: RoboCup-2003: Robot Soccer World Cup V (2003)Google Scholar
  8. 8.
    Ross, M.: Statistical motion segmentation and object tracking without a-priori models. In: 11th International Fall Workshop on Vision, Modeling, and Visualization (VMV 2006), Aachen, Germany (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • John Atkinson
    • 1
  • Claudio Castro
    • 1
  1. 1.Department of Computer SciencesUniversidad de ConcepcionConcepcionChile

Personalised recommendations