An Application of Gaussian Mixtures: Colour Segmenting for the Four Legged League Using HSI Colour Space

  • Naomi Henderson
  • Robert King
  • Richard H. Middleton
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5001)


In the colour coded environment of the RoboCup 4 Legged League it is crucial to extract as much colour information as possible from an image without error. To do this requires hours of manual YUV pixel mapping and testing to ensure robustness under all possible lighting conditions. The YUV colour space is a very convenient standard for transmission of video data, but for colour classification and segmentation it suffers from being non-intuitive and sensitive to changes in lighting. Alternatively, colour classification principles can be applied in an HSI colour space; one of the convenient characteristics of the HSI colour space is that the hue value, H, represents the colour wavelength information. From this concept it is easier to separate and label colour regions in an automated process as the theoretical hue and colour wavelength relationship is known. By fitting a Gaussian model using mixtures to HSI histograms we can generate boundaries of colour classes in HSI colour space.


  1. 1.
    Cameron, D., Barnes, N.: Knowledge-Based Autonomous Dynamic Colour Calibration. In: Polani, D., Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 226–237. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Sridharan, M., Stone, P.: Color Learning on a Mobile Robot: Towards Full Autonomy under Changing Illumination. In: The International Joint Conference on Artificial Intelligence (IJCAI 2007), Hyderabad, India (2007)Google Scholar
  3. 3.
    Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation for interactive robots. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000), vol. 3, pp. 2061–2066 (2000)Google Scholar
  4. 4.
    Austin, D., Barnes, N.: Red is the new black - or is it? In: Proc. of the 2003 Australasian Conference on Robotics and Automation (2003)Google Scholar
  5. 5.
    Qunilan, M. J. , Henderson, N., Nicklin, S. P., Fisher, R., Chalup, S. K., Middleton, R. H., King, R.: The 2006 NUbots Team Report. University of Newcastle, EECS Technical Report (2006)Google Scholar
  6. 6.
    Quinlan, M.J., Murch, C.L., Moore, T.G., Middleton, R.H., Yung Li, L.A., King, R., Chalup, S.K.: The 2004 NUbots Team Report. University of Newcastle EECS Technical Report (2004)Google Scholar
  7. 7.
    Stanton, C., Williams, M.-A.: A Novel and Practical Approach towards Color Constancy for Mobile Robots using Overlapping Color Space Signatures. In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020, pp. 444–451. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Cohen, D., Hua Ooi, Y., Vernaza, P., Lee, D.D.: The University of Pennsylvania Robocup 2003 Legged Soccer Team. Technical Report University of Pennsylvania (2003)Google Scholar
  9. 9.
    van Soest, D.A., de Greef, M., Sturm, J., Visser, A.: Autonomous Color Learning in an Artificial Environment. In: Proc. 18th Dutch-Belgian Artificial Intelligence Conference, BNAIC 2006, Namen, Belgium, October 2006, pp. 299–306 (2006)Google Scholar
  10. 10.
    Sridharan, M., Stone, P.: Towards illumination invariance in the legged league. In: Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J. (eds.) RoboCup 2004. LNCS (LNAI), vol. 3276, pp. 196–208. Springer, Berlin (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Naomi Henderson
    • 1
  • Robert King
    • 1
  • Richard H. Middleton
    • 1
  1. 1.School of Electrical Engineering & Computer ScienceThe University of NewcastleCallaghanAustralia

Personalised recommendations