Pareto-Optimal Offensive Player Positioning in Simulated Soccer

  • Vadim Kyrylov
  • Serguei Razykov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5001)


The ability by the simulated soccer player to make rational decisions about moving without ball is a critical factor of success. Here we limit our scope to the offensive situation, i.e. when the ball is controlled by own team, and propose a systematic method for determining the optimal player position. Existing methods for accomplishing this task do not systematically balance risks and rewards, as they are not Pareto optimal by design. This may result in overlooking good opportunities. One more shortcoming of these methods is over simplifications in predicting the situation on the field, which may lead to performance loss. We propose two new ideas to address these issues. Experiments demonstrate that this results in a substantial increase in the team performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kyrylov, V.: Balancing Rewards, Risks, Costs, and Real-Time Constraints in the Ball Passing Algorithm for the Robotic Soccer. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Stone, P., Veloso, M., Riley, P.: The CMUnited-98 Champion Simulator Team. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604, pp. 61–76. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Reis, L.P., Lau, N., Oliveira, E.C.: Situation Based Strategic Positioning for Coordinating a Team of Homogeneous Agents. In: Hannebauer, M., Wendler, J., Pagello, E. (eds.) ECAI-WS 2000. LNCS (LNAI), vol. 2103. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    De Boer, R., Kok, J.: The Incremental Development of a Synthetic Multi-Agent System: The UvA Trilearn 2001 Robotic Soccer Simulation Team. Master’s Thesis. University of Amsterdam (2002)Google Scholar
  5. 5.
    Kok, J., Spaan, M., Vlassis, N.: Multi-Robot Decision Making Using Coordination Graphs. In: Proceedings of the International Conference on Advanced Robotics (ICAR), Coimbra, Portugal, pp. 1124–1129 (June 2003)Google Scholar
  6. 6.
    Andou, T.: Refinement of Soccer Agents’ Positions Using Reinforcement Learning. In: Kitano, H. (ed.) RoboCup 1997. LNCS, vol. 1395, pp. 373–388. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Nakashima, T., Udo, M., Ishibuchi, H.: Acquiring the positioning skill in a soccer game using a fuzzy Q-learning. In: Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, July 16-20, 2003, vol. 3, pp. 1488–1491 (2003)Google Scholar
  8. 8.
    Kalyanakrishnan, S., Liu, Y., Stone, P.: Half Field Offense in RoboCup Soccer: A Multiagent Reinforcement Learning Case Study. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434. Springer, Heidelberg (to appear, 2007)CrossRefGoogle Scholar
  9. 9.
    Beim, G.: Principles of Modern Soccer. Houghton Mifflin Company, Boston (1977)Google Scholar
  10. 10.
    Vogelsinger, H.: The Challenge of Soccer. Allyn and Bacon, Inc., Boston (1973)Google Scholar
  11. 11.
    Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Acaemic Publishers, Berlin (1998)Google Scholar
  12. 12.
    Zhan, Y.: Tao of Soccer: An Open Source project (2006),
  13. 13.
    Fisher, R.A., Bennett, J.H.: Statistical Methods, Experimental Design, and Scientific Inference. Oxford University Press, Oxford (1990)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Vadim Kyrylov
    • 1
  • Serguei Razykov
    • 2
  1. 1.Rogers State UniversityClaremoreUSA
  2. 2.Simon Fraser University SurreySurrey, British ColumbiaCanada

Personalised recommendations