Advertisement

A Fuzzy Controller for Autonomous Negotiation of Stairs by a Mobile Robot with Adjustable Tracks

  • Winai Chonnaparamutt
  • Andreas Birk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5001)

Abstract

Tracked mobile robots with adjustable support tracks or flippers are popular promising solutions for negotiating rough terrain and 3D obstacles. Though many according robot bases are in principle physically capable of climbing stairs, it is a non-trivial control-task for a remote tele-operator, especially when the user can not directly see the robot like in search and rescue scenarios. To limit training requirements and to ease the cognitive load on operators, respectively to enable fully autonomous rescue robots, we developed a fuzzy controller for this task, which adjusts the drive forces and the posture of the flipper. The design of the controller is guided by observing the strategies of a trained user when tele-operating a robot with unlimited visual information. In doing so, an Open Dynamics Engine (ODE) simulation of our robot is used where the full set of all physical parameters is accessible for analysis. Based on this data, it is shown in several experiments that the controller is not only capable of climbing stairs but that it does so in a more efficient manner than the human user who served as training model.

Keywords

Mobile Robot Pitch Angle Fuzzy Controller Intelligent Robot Unmanned Ground Vehicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Debenest, P., Fukushima, E.F., Hirose, S.: Development and control of a buggy robot for operation on unstructured terrain. In: International Conference on Intelligent Robots and System, vol. 1, pp. 763–768 (2002)Google Scholar
  2. 2.
    Kimura, H., Hirose, S.: Development of genbu: Active wheel passive joint articulated mobile robot. In: International Conference on Intelligent Robots and System, vol. 1, pp. 823–828 (2002)Google Scholar
  3. 3.
    Tokuda, K., Osuka, K., Yano, S., Ono, T.: Concept and development of general rescue robot cul. In: International Conference on Intelligent Robots and Systems, vol. 3, pp. 1902–1907 (1999)Google Scholar
  4. 4.
    Kikuchi, F., Ota, Y., Hirose, S.: Basic performance experiments for jumping quadruped. In: International Conference on Intelligent Robots and Systems, vol. 3, pp. 3378–3383 (2003)Google Scholar
  5. 5.
    Stoeter, S.A., Rybski, P.E., Gini, M., Papanikolopoulos, N.: Autonomous stair-hopping with scout robots. In: International Conference on Intelligent Robots and System, vol. 1, pp. 721–726 (2002)Google Scholar
  6. 6.
    Osuka, K., Kitajima, H.: Development of mobile inspection robot for rescue activities: Moira. In: International Conference on Intelligent Robots and Systems, vol. 3, pp. 3373–3377 (2003)Google Scholar
  7. 7.
    Murphy, R.: Marsupial and shape-shifting robots for urban search and rescue. IEEE Intelligent Systems 15, 14–19 (2000)Google Scholar
  8. 8.
    Wong, J., Huang, W.: ”wheels vs. tracks” - a fundamental evaluation from the traction perspective. Journal of Terramechanics 43, 27–42 (2006)CrossRefGoogle Scholar
  9. 9.
    Hardarsson, F.: Locomotion for difficult terrain. Technical Report TRITA-MMK-1998:3, Mechatronics Lab, Dept. of Machine Design (1997)Google Scholar
  10. 10.
    Wong, J.Y.: Theory of Ground Vehicles, 3rd edn. John Wiley and Sons, Inc. (2001)Google Scholar
  11. 11.
    Houdini: Reconfigurable in-tank robot. Technology Development Data Sheet, Red Zone Robotics, Inc.Google Scholar
  12. 12.
    Isozaki, Y., Nakai, K.: Development of a work robot with a manipulator and a transport robot for neuclear facility emergency preparedness. Advanced Robotic 16(6), 489–492 (2002)CrossRefGoogle Scholar
  13. 13.
    Rison, B., Wedeward, K.: Locomotion lecture slide of introduction to design course, http://www.ee.nmt.edu/~wedeward/EE382/SP02/locomotion.pdf
  14. 14.
    Dan, Z., Tianmiao, W., Jianhong, L., Guang, H.: Modularization of miniature tracked reconnaissance robot. In: Proceedings of the 2004 IEEE International Conference on Robotics and Biomimetics, pp. 490–494 (2004)Google Scholar
  15. 15.
    Li, B., Ma, S., Liu, J., Wang, Y.: Development of a shape shifting robot for search and rescue. In: Proceedings of the 2005 IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 25–31 (2005)Google Scholar
  16. 16.
    Iwamoto, T., Yamamoto, H.: Mechanical design of variable configuration tracked vehicle. Journal of Mechanical Design 112, 289–294 (1990)CrossRefGoogle Scholar
  17. 17.
    Schempf, H., Mutschler, E., Piepgras, C., Warwick, J., Chemel, B., Boehmke, S., Crowley, W., Fuchs, R., Guyot, J.: Pandora: autonomous urban robotic reconnaissance system. In: International Conference on Robotics and Automation, 1999, vol. 3, pp. 2315–2321 (1999)Google Scholar
  18. 18.
    Schempf, H.: Aurora - minimalist design for tracked locomotion. Springer Tracts in Advanced Robotics 20, 453–466 (2003)CrossRefGoogle Scholar
  19. 19.
    Lee, W., Kang, S., Kim, M., Shin, K.: Rough terrain negotiable mobile platform with passively adaptive double-tracks and its application to rescue missions. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005. ICRA 2005, pp. 1591–1596 (2005)Google Scholar
  20. 20.
    Kang, S., Lee, W., Kim, M., Shin, K.: Robhaz-rescue: rough-terrain negotiable teleoperated mobile robot for rescue mission. In: IEEE International Workshop on Safety, Security and Rescue Robotics, SSRR, pp. 105–110 (2005)Google Scholar
  21. 21.
    Lee, W., Kang, S., Kim, M., Park, M.: Robhaz-dt3: teleoperated mobile platform with passively adaptive double-track for hazardous environment applications. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), vol. 1, pp. 33–38 (2004)Google Scholar
  22. 22.
    Lee, W., Kang, S., Lee, S., Park, C.: Robocuprescue - robot league team ROBHAZ-DT3 (south korea). In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020. Springer, Heidelberg (2006)Google Scholar
  23. 23.
    Kadous, M.W., Kodagoda, S., Paxman, J., Ryan, M., Sammut, C., Sheh, R., Miro, J.V., Zaitseff, J.: Robocuprescue - robot league team CASualty (australia). In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020. Springer, Heidelberg (2006)Google Scholar
  24. 24.
    Tsubouchi, T., Tanaka, A.: Robocuprescue - robot league team Intelligent Robot Laboratory (japan). In: Bredenfeld, A., Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020. Springer, Heidelberg (2006)Google Scholar
  25. 25.
    Lee, C.H., Kim, S.H., Kang, S.C., Kim, M.S., Kwak, Y.K.: Double-track mobile robot for hazardous environment applications. Advanced Robotics 17, 447–459 (2003)CrossRefGoogle Scholar
  26. 26.
    Blackburn, M., Bailey, R., Lytle, B.: Improved mobility in a multidegree-of-freedom unmanned ground vehicle. In: SPIE Proceeding on Unmanned Ground Vehicle Technology VI. IEEE (2004)Google Scholar
  27. 27.
    ELROB: European land-robot trial (elrob) (2006)Google Scholar
  28. 28.
    Birk, A., Pathak, K., Schwertfeger, S., Chonnaparamutt, W.: The iub rugbot: an intelligent, rugged mobile robot for search and rescue operations. In: IEEE International Workshop on Safety, Security, and Rescue Robotics (SSRR). IEEE Press (2006)Google Scholar
  29. 29.
    Chonnaparamutt, W., Birk, A.: A new mechatronic component for adjusting the footprint of tracked rescue robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi, T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Smith, R.: Open dynamics engine, http://www.ode.org/
  31. 31.
    Zadeh, L.A.: Fuzzy sets. Information and Control, 338–353 (1965)Google Scholar
  32. 32.
    Zadeh, L.A.: Fuzzy logic. IEEE Computer, 83–93 (1988)Google Scholar
  33. 33.
    Ying, H.: Fuzzy Control and Modeling. IEEE Press (2000)Google Scholar
  34. 34.
    Jantzen, J.: Design of fuzzy controllers. Technical report, Technical University of Denmark, Department of Automation (1998)Google Scholar
  35. 35.
    Niku, S.B.: Introduction to Robotics: Analysis, Systems, Applications, vol. 9. Prentice Hall (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Winai Chonnaparamutt
    • 1
  • Andreas Birk
    • 1
  1. 1.School of Engineering and ScienceJacobs University BremenBremenGermany

Personalised recommendations