Process Discovery Using Integer Linear Programming

  • J. M. E. M. van der Werf
  • B. F. van Dongen
  • C. A. J. Hurkens
  • A. Serebrenik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)

Abstract

The research domain of process discovery aims at constructing a process model (e.g. a Petri net) which is an abstract representation of an execution log. Such a Petri net should (1) be able to reproduce the log under consideration and (2) be independent of the number of cases in the log. In this paper, we present a process discovery algorithm where we use concepts taken from the language-based theory of regions, a well-known Petri net research area. We identify a number of shortcomings of this theory from the process discovery perspective, and we provide solutions based on integer linear programming.

Keywords

Integer Linear Programming Process Discovery Causal Dependency Integer Linear Programming Formulation Integer Linear Programming Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LP Solve Reference guide, http://lpsolve.sourceforge.net/5.5/
  2. 2.
    ILOG CPLEX, ILOG, Inc. (2006), http://www.ilog.com/products/cplex/
  3. 3.
    van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G. (eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., et al.: ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  6. 6.
    van der Aalst, W.M.P., Rubin, V., van Dongen, B.F., Kindler, E., Günther, C.W.: Process Mining: A Two-Step Approach using Transition Systems and Regions. Acta Informatica (submitted, 2007)Google Scholar
  7. 7.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  8. 8.
    Badouel, E., Bernardinello, L., Darondeau, Ph.: Polynomial Algorithms for the Synthesis of Bounded Nets. In: Mosses, P.D., Schwartzbach, M.I., Nielsen, M. (eds.) CAAP 1995, FASE 1995, and TAPSOFT 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995)Google Scholar
  9. 9.
    Badouel, E., Darondeau, Ph.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Bergenthum, R., Desel, J., Juhás, G., Lorenz, R.: Can I Execute My Scenario in Your Net? VipTool Tells You! In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 381–390. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining based on regions of languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving Petri nets from Finite Transition Systems. IEEE Transactions on Computers 47(8), 859–882 (1998)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Darondeau, P.: Deriving Unbounded Petri Nets from Formal Languages. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 533–548. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  15. 15.
    van Dongen, B.F.: Process Mining and Verification. PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands (2007)Google Scholar
  16. 16.
    Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures - Part 1 and Part 2. Acta Informatica 27(4), 315–368 (1989)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Lorenz, R., Juhás, R.: How to Synthesize Nets from Languages - a Survey. In: Proceedings of the Wintersimulation Conference (WSC) 2007 (2007)Google Scholar
  18. 18.
    Peterson, J.L.: Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs (1981)Google Scholar
  19. 19.
    Reisig, W.: Petri Nets: An Introduction. Monographs in Theoretical Computer Science: An EATCS Series, vol. 4. Springer, Berlin (1985)MATHGoogle Scholar
  20. 20.
    Schrijver, A.: Theory of Linear and Integer programming. Wiley-Interscience, Chichester (1986)MATHGoogle Scholar
  21. 21.
    Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from Event-Based Data using Little Thumb. Integrated Computer-Aided Engineering 10(2), 151–162 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. M. E. M. van der Werf
    • 1
  • B. F. van Dongen
    • 1
  • C. A. J. Hurkens
    • 1
  • A. Serebrenik
    • 1
  1. 1.Department of Mathematics and Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations