Advertisement

Cooperative Arrival Management in Air Traffic Control - A Coloured Petri Net Model of Sequence Planning

  • Hendrik Oberheid
  • Dirk Söffker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)

Abstract

A Coloured Petri Net model implemented in CPN Tools is presented which simulates a potential future arrival planning process in air traffic control. The planning process includes a cooperation between airborne and ground side in which the aircraft involved provide information e.g. with regard to their estimated earliest and latest times of arrival at the airport. This information is then used by a planning system on the ground to establish a favorable sequence in which aircraft will be led to the runway. The model has been built in order to acquire a better understanding of how the behavior of individual actors (i.e. aircraft) within the cooperation influences the outcome of the overall sequence planning process. A peculiarity of the CP-net from a modeling point of view lies in the fact that state space analysis is used repeatedly during each cycle of the planning process to generate and evaluate the potential solutions to the sequence planning problem. The results gained through queries on the state space are then re-fed into the simulation and analysis for the next planning cycle. The results from the model will in future be used to build realistic scenarios and assumptions on how different actors will interact with the system from a human factors point of view.

Keywords

air traffic management arrival management sequence planning coloured Petri nets state space analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fairclough, I.: Phare Advanced Tools Arrival Manager Final Report. Technical report, Eurocontrol, European Organisation for Safety of Air Navigation (1999)Google Scholar
  2. 2.
    Zielinsky, T.: Erkennung und Lösung von Konflikten bei Anflug-Trajektorien. Technical report, German Aerospace Center (DLR) (2003)Google Scholar
  3. 3.
    Büchner, U., Czerlitzki, B., Hansen, H., Helmke, H., Pahner, S., Pfeil, A., Schnell, M., Schnieder, H., Theis, P., Uebbing-Rumke, M.: KOPIM-AIRCRAFT - Entwicklungsstatus von boden- und bordseitigen Systemen und von operationellen ATM-Verfahren und Konzepten für ein kooperatives ATM. Technical report, German Aerospace Center (DLR), Airbus Deutschland GmbH, TU Darmstadt (2005)Google Scholar
  4. 4.
    Korn, B., Helmke, H., Kuenz, A.: 4D Trajectory Managment in the Extended TMA: Coupling AMAN and 4D FMS for Optimized Approach Trajectories. In: ICAS 2006 - 25th International Congress of the Aeronautical Sciences, Hamburg, Germany (2006)Google Scholar
  5. 5.
    Butler, R., Carreno, V., Di Vito, B., Hayhurst, K., Holloway, C., Miner, P., Munoz, C., Geser, A., Gottliebsen, H.: NASA Langley’s Research and Technology-Transfer Program in Formal Methods. Technical report, NASA Langley (2002)Google Scholar
  6. 6.
    Butler, R., Geser, A., Maddalon, J., Munoz, C.: Formal Analysis of Air Traffic Management Systems: The Case of Conflict Resolution and Recovery. In: Winter Simulation Conference (WSC 2003), New Orleans (2003)Google Scholar
  7. 7.
    Munoz, C., Dowek, G., Carreno, V.: Modelling and Verification of an Air Traffic Concept of Operations. In: International Symposium on Software Testing and Analysis, Boston, Massachusetts, pp. 175–182 (2004)Google Scholar
  8. 8.
    Degani, A., Heymann, M.: Formal Verification of Human-Automation Interaction. Human Factors 44(1), 28–43 (2002)CrossRefGoogle Scholar
  9. 9.
    Carreno, V., Munoz, C.: Formal Analysis of Parallel Landing Scenarios. In: Digital Avionics System Conferences, Philadelphia, USA, vol. 1, pp. 175–182 (2000)Google Scholar
  10. 10.
    Werther, B., Moehlenbrink, C., Rudolph, M.: Coloured Petri Net based Formal Airport Control Model for Simulation and Analysis of Airport Control Processes. In: Duffy, V.G. (ed.) HCII 2007 and DHM 2007. LNCS, vol. 4561. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Kovacs, A., Nemeth, E., Hangos, K.: Modeling and Optimization of Runway Traffic Flow Using Coloured Petri Nets. In: International Conference on Control and Automation (ICCA), Budapest, Hungary, vol. 2, pp. 881–886 (2005)Google Scholar
  12. 12.
    Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN Tools for Modelling and Validation of Concurrent Systems. Software Tools for Technology Transfer (STTT) 9(3-4), 213–254 (2007)CrossRefGoogle Scholar
  13. 13.
    Oberheid, H., Gamrad, D., Söffker, D.: Closed Loop State Space Analysis and Simulation for Cognitive Systems. In: 8th International Conference on Application of Concurrency to System Design (submitted, 2008)Google Scholar
  14. 14.
    Günther, T., Fricke, H.: Potential of Speed Control on Flight Efficiency. In: ICRAT - Second International Conference on Research in Air Transportation, pp. 197–201 (2006)Google Scholar
  15. 15.
    Günther, T.: Validierung der Interdependenzen eines Systems zur Ankunftszeitoptimierung von Flugzeugen in Ergänzung zu einem Arrival Management an einem Verkehrsflughafen. Diploma thesis, Technical University Dresden (2004)Google Scholar
  16. 16.
    AT&T-Research: GraphViz Manual (2006), http://www.graphviz.org/Documentation.php
  17. 17.
    Schwarz, D.: Anflugsequenzplanung mit dem A* Algorithmus zur Beschleunigung der Sequenzsuche. Technical Report 112-2005/02, German Aerospace Center (DLR) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hendrik Oberheid
    • 1
  • Dirk Söffker
    • 2
  1. 1.Institute of Flight GuidanceGerman Aerospace Center (DLR)BraunschweigGermany
  2. 2.Chair of Dynamics and ControlUniversity of Duisburg-EssenDuisburgGermany

Personalised recommendations