Advertisement

A Practical Approach to Verification of Mobile Systems Using Net Unfoldings

  • Roland Meyer
  • Victor Khomenko
  • Tim Strazny
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5062)

Abstract

In this paper we propose a technique for verification of mobile systems. We translate finite control processes, which are a well-known subset of π-Calculus, into Petri nets, which are subsequently used for model checking. This translation always yields bounded Petri nets with a small bound, and we develop a technique for computing a non-trivial bound by static analysis. Moreover, we introduce the notion of safe processes, which are a subset of finite control processes, for which our translation yields safe Petri nets, and show that every finite control process can be translated into a safe one of at most quadratic size. This gives a possibility to translate every finite control process into a safe Petri net, for which efficient unfolding-based verification is possible. Our experiments show that this approach has a significant advantage over other existing tools for verification of mobile systems in terms of memory consumption and runtime.

Keywords

finite control processes safe processes π-Calculus mobile systems model checking Petri net unfoldings 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [CGP99]
    Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (1999)Google Scholar
  2. [Dam96]
    Dam, M.: Model checking mobile processes. Information and Computation 129(1), 35–51 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [EH01]
    Esparza, J., Heljanko, K.: Implementing LTL model checking with net unfoldings. In: Dwyer, M.B. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 37–56. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. [ERV02]
    Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding Algorithm. Formal Methods in System Design 20(3), 285–310 (2002)zbMATHCrossRefGoogle Scholar
  5. [Esp98]
    Esparza, J.: Decidability and complexity of Petri net problems — an introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–428. Springer, Heidelberg (1998)Google Scholar
  6. [FGMP03]
    Ferrari, G.-L., Gnesi, S., Montanari, U., Pistore, M.: A model-checking verification environment for mobile processes. ACM Transactions on Software Engineering and Methodology 12(4), 440–473 (2003)CrossRefGoogle Scholar
  7. [Kho03]
    Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD thesis, School of Computing Science, Newcastle University (2003)Google Scholar
  8. [KKN06]
    Khomenko, V., Koutny, M., Niaouris, A.: Applying Petri net unfoldings for verification of mobile systems. In: Proc. Workshop on Modelling of Objects, Components and Agents (MOCA 2006), Bericht FBI-HH-B-267/06, pp. 161–178. University of Hamburg (2006)Google Scholar
  9. [KKY04]
    Khomenko, V., Koutny, M., Yakovlev, A.: Detecting state coding conflicts in STG unfoldings using SAT. Fundamenta Informaticae 62(2), 1–21 (2004)MathSciNetGoogle Scholar
  10. [McM92]
    McMillan, K.: Using unfoldings to avoid state explosion problem in the verification of asynchronous circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992. LNCS, vol. 663, pp. 164–174. Springer, Heidelberg (1993)Google Scholar
  11. [Mey07]
    Meyer, R.: A theory of structural stationarity in the π-Calculus (under revision) (2007)Google Scholar
  12. [Mil99]
    Milner, R.: Communicating and Mobile Systems: the π−Calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  13. [MKS08]
    Meyer, R., Khomenko, V., Strazny, T.: A practical approach to verification of mobile systems using net unfoldings. Technical Report CS-TR-1064, School of Computing Science, Newcastle University (2008), URL: http://www.cs.ncl.ac.uk/research/pubs/trs/abstract.php?number=1064
  14. [OP92]
    Orava, F., Parrow, J.: An algebraic verification of a mobile network. Formal Aspects of Computing 4(6), 497–543 (1992)zbMATHCrossRefGoogle Scholar
  15. [Pis99]
    Pistore, M.: History Dependent Automata. PhD thesis, Dipartimento di Informatica, Università di Pisa (1999)Google Scholar
  16. [SW01]
    Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  17. [Val98]
    Valmari, A.: Lectures on Petri Nets I: Basic Models. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 429–528. Springer, Heidelberg (1998)Google Scholar
  18. [VM94]
    Victor, B., Moller, F.: The mobility workbench: A tool for the π−Calculus. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 428–440. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Roland Meyer
    • 1
  • Victor Khomenko
    • 2
  • Tim Strazny
    • 1
  1. 1.Department of Computing ScienceUniversity of OldenburgOldenburgGermany
  2. 2.School of Computing ScienceUniversity of NewcastleNewcastle upon TyneU.K.

Personalised recommendations