Diversity and Evolution of Plastids and Their Genomes

  • E. Kim
  • J. M. Archibald
Part of the Plant Cell Monographs book series (CELLMONO, volume 13)


Plastids, the light-harvesting organelles of plants and algae, are the descendants of cyanobacterial endosymbionts that became permanent fixtures inside nonphotosynthetic eukaryotic host cells. This chapter provides an overview of the structural, functional and molecular diversity of plastids in the context of current views on the evolutionary relationships among the eukaryotic hosts in which they reside. Green algae, land plants, red algae and glaucophyte algae harbor double-membrane-bound plastids whose ancestry is generally believed to trace directly to the original cyanobacterial endosymbiont. In contrast, the plastids of many other algae, such as dinoflagellates, diatoms and euglenids, are usually bound by more than two membranes, suggesting that these were acquired indirectly via endosymbiotic mergers between nonphotosynthetic eukaryotic hosts and eukaryotic algal endosymbionts. An increasing amount of genomic data from diverse photosynthetic taxa has made it possible to test specific hypotheses about the evolution of photosynthesis in eukaryotes and, consequently, improve our understanding of the genomic and biochemical diversity of modern-day eukaryotic phototrophs.


Chloroplast Genome Plastid Genome Primary Plastid Rhodomonas Salina Cyanobacterial Endosymbiont 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adl SM, Simpson AGB, Farmer MA, Andersen RA, Anderson OR, Barta JR, Bowser SS, Brugerolle G, Fensome RA, Fredericq S, James T Y, Karpov S, Kugrens P, Krug J, Lane CE, Lewis LA, Lodge J, Lynn DH, Mann DG, McCourt RM, Mendoza L, Moestrup O, Mozley-Standridge SE, Nerad TA, Shearer CA, Smirnov AV, Spiegel FW, Taylor MFJR (2005) The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol 52:399–451 Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522PubMedGoogle Scholar
  2. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522Google Scholar
  3. Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol Life Sci 62:1182–1197PubMedGoogle Scholar
  4. Antia NJ, Cheng J Y, Foyle RAJ, Percival E (1979) Marine cryptomonad starch from autolysis of glycerol-grown Chroomonas salina. J Phycol 15:57–62Google Scholar
  5. Archibald JM (2006) Endosymbiosis: double-take on plastid origins. Curr Biol 16:R690– R692PubMedGoogle Scholar
  6. Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29:392–402PubMedGoogle Scholar
  7. Archibald JM, Keeling PJ (2002) Recycled plastids: a ‘green movement’ in eukaryotic evolution. Trends Genet 18:577–584PubMedGoogle Scholar
  8. Archibald JM, Keeling PJ (2004) Actin and ubiquitin protein sequences support a cercozoan/ foraminiferan ancestry for the plasmodiophorid plant pathogens. J Eukaryot Microbiol 51:113–118PubMedGoogle Scholar
  9. Archibald JM, Rogers MB, Toop M, Ishida K, Keeling PJ (2003) Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans. Proc Natl Acad Sci USA 100:7678–7683PubMedGoogle Scholar
  10. Bachvaroff TR, Concepcion GT, Rogers CR, Herman EM, Delwiche CF (2004) Dinoflagellate expressed sequence tag data indicate massive transfer of chloroplast genes to the nuclear genome. Protist 155:65–78PubMedGoogle Scholar
  11. Bachvaroff TR, Puerta MVS, Delwiche CF (2005) Chlorophyll c -containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol 22:1772–1782PubMedGoogle Scholar
  12. Ball SG, Morell MK (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54:207–233PubMedGoogle Scholar
  13. Barbier G, Oesterhelt C, Larson MD, Halgren RG, Wilkerson C, Garavito RM, Benning C, Weber APM (2005) Comparative genomics of two closely related unicellular thermo-acidophilic red algae, Galdieria sulphuraria and Cyanidioschyzon merolae , reveals the molecular basis of the metabolic flexibility of Galdieria sulphuraria and significant differences in carbohydrate metabolism of both algae. Plant Physiol 137:460–474PubMedGoogle Scholar
  14. Barbrook AC, Santucci N, Plenderleith LJ, Hiller RG, Howe CJ (2006) Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes. BMC Genomics 7:297PubMedGoogle Scholar
  15. Beale SI (1999) Enzymes of chlorophyll biosynthesis. Photosynth Res 60:43–73Google Scholar
  16. Belanger AS, Brouard JS, Charlebois P, Otis C, Lemieux C, Turmel M (2006) Distinctive architecture of the chloroplast genome in the chlorophycean green alga Stigeoclonium helveticum. Mol Genet Genomics 276:464–477PubMedGoogle Scholar
  17. Bendich AJ (2004) Circular chloroplast chromosomes: The grand illusion. Plant Cell 16:1661–1666PubMedGoogle Scholar
  18. Bergholtz T, Daugbjerg N, Moestrup O, Fernandez-Tejedor M (2006) On the identity of Karlodinium veneficum and description of Karlodinium armiger sp nov (Dinophyceae), based on light and electron microscopy, nuclear-encoded LSU rDNA, and pigment composition. J Phycol 42:170–193Google Scholar
  19. Bergthorsson U, Richardson AO, Young GJ, Goertzen LR, Palmer JD (2004) Massive horizontal transfer of mitochondrial genes from diverse land plant donors to the basal angiosperm Amborella. Proc Natl Acad Sci USA 101:17747–17752PubMedGoogle Scholar
  20. Bhattacharya D, Archibald JM (2006) Response to Theissen and Martin. Curr Biol 16:R1017–R1018Google Scholar
  21. Blanchard JL, Hicks JS (1999) The non-photosynthetic plastid in malarial parasites and other api-complexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 46:367–375PubMedGoogle Scholar
  22. Bodyl A (2005) Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41:712–719Google Scholar
  23. Bodyl A, Moszczynski K (2006) Did the peridinin plastid evolve through tertiary endosymbiosis? A hypothesis. Eur J Phycol 41:435–448Google Scholar
  24. Bodyl A, Mackiewicz P, Stiller JW (2007) The intracellular cyanobacteria of Paulinelia chromatophora : endosymbionts or organelles? Trends Microbiol 15:295–296PubMedGoogle Scholar
  25. Breglia SA, Slamovits CH, Leander BS (2007) Phylogeny of phagotrophic euglenids (Euglenozoa) as inferred from hsp90 gene sequences. J Eukaryot Microbiol 54:86–92PubMedGoogle Scholar
  26. Brugerolle G (2002) Colpodella vorax: Ultrastructure, predation, life-cycle mitosis, and phylogenetic relationships. Eur J Protistol 38:113–125Google Scholar
  27. Buleon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112PubMedGoogle Scholar
  28. Buleon A, Veronese G, Putaux JL (2007) Self-association and crystallization of amylose. Aust J Chem 60:706–718Google Scholar
  29. Bungard RA (2004) Photosynthetic evolution in parasitic plants: Insight from the chloroplast genome. Bioessays 26:235–247PubMedGoogle Scholar
  30. Burki F, Shalchian-Tabrizi K, Minge M, Skjaeveland A, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2:e790PubMedGoogle Scholar
  31. Busse I, Preisfeld A (2002) Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene 284:83–91PubMedGoogle Scholar
  32. Busse I, Patterson DJ, Preisfeld A (2003) Phylogeny of phagotrophic euglenids (Euglenozoa): a molecular approach based on culture material and environmental samples. J Phycol 39:828–836Google Scholar
  33. Cai XM, Fuller AL, McDougald LR, Zhu G (2003) Apicoplast genome of the coccidian Eimeria tenella Gene 321:39–46Google Scholar
  34. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46:347–366PubMedGoogle Scholar
  35. Cavalier-Smith T, Chao EE (1996) 18S rRNA sequence of Heterosigma carterae (Raphidophyceae), and the phylogeny of heterokont algae (Ochrophyta). Phycologia 35:500–510Google Scholar
  36. Cavalier-Smith T, Chao EE, Thompson CE, Hourihane SL (1995/1996) Oikomonas , a distinctive zooflagellate related to chrysomonads. Arch Protistenkd 146:273–279Google Scholar
  37. Chen M, Hiller RG, Howe CJ, Larkum AWD (2005) Unique origin and lateral transfer of prokaryotic chlorophyll b and chlorophyll d light-harvesting systems. Mol Biol Evol 22:21–28PubMedGoogle Scholar
  38. Chiovitti A, Ngoh JE, Wetherbee R (2006) 1,3-Beta- d -glucans from Haramonas dimorpha (Raphidophyceae). Bot Mar 49:360–362Google Scholar
  39. Chizhov AO, Dell A, Morris HR, Reason AJ, Haslam SM, McDowell RA, Chizhov OS, Usov AI (1998) Structural analysis of laminarans by MALDI and FAB mass spectrometry. Carbohydr Res 310:203–210Google Scholar
  40. Chumley TW, Palmer JD, Mower JP, Fourcade HM, Calie PJ, Boore JL, Jansen RK (2006) The complete chloroplast genome sequence of Pelargonium x hortorum : organization and evolution of the largest and most highly rearranged chloroplast genome of land plants. Mol Biol Evol 23:2175–2190PubMedGoogle Scholar
  41. Copertino DW, Hallick RB (1993) Group II and group III introns of twintrons: Potential relationships with nuclear premessenger RNA introns. Trends Biochem Sci 18:467–471PubMedGoogle Scholar
  42. Coppin A, Varre JS, Lienard L, Dauvillee D, Guerardel Y, Soyer-Gobillard MO, Buleon A, Ball S, Tomavo S (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol 60:257–267PubMedGoogle Scholar
  43. Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583PubMedGoogle Scholar
  44. Cunningham FX, Lee H, Gantt E (2007) Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae. Eukaryot Cell 6:533–545PubMedGoogle Scholar
  45. Dammeyer T, Michaelsen K, Frankenberg-Dinkel N (2007) Biosynthesis of open-chain tetrapyr-roles in Prochlorococcus marinus. FEMS Microbiol Lett 271:251–257PubMedGoogle Scholar
  46. Deane JA, Strachan IM, Saunders GW, Hill DRA, McFadden GI (2002) Cryptomonad evolution: nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. J Phycol 38: 1236–1244Google Scholar
  47. De Cambiaire JC, Otis C, Lemieux C, Turmel M (2006) The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands. BMC Evol Biol 6:37PubMedGoogle Scholar
  48. De Koning AP, Keeling PJ (2006) The complete plastid genome sequence of the parasitic green alga Helicosporidium sp is highly reduced and structured. BMC Biol 4:12PubMedGoogle Scholar
  49. De Las Rivas J, Lozano JJ, Ortiz AR (2002) Comparative analysis of chloroplast genomes: functional annotation, genome-based phylogeny, and deduced evolutionary patterns. Genome Res 12:567–583Google Scholar
  50. Delwiche CF, Palmer JD (1996) Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882PubMedGoogle Scholar
  51. De Novoa PG, Williams KP (2004) The tmRNA website: Reductive evolution of tmRNA in plas-tids and other endosymbionts. Nucleic Acids Res 32:D104–D108Google Scholar
  52. Deschamps P, Haferkamp I, Dauvillee D, Haebel S, Steup M, Buleon A, Putaux JL, Colleoni C, d'Hulst C, Plancke C, Gould S, Maier U, Neuhaus HE, Ball S (2006) Nature of the periplas-tidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryot Cell 5:954–963PubMedGoogle Scholar
  53. Douglas SE, Penny SL (1999) The plastid genome of the cryptophyte alga, Guillardia theta: complete sequence and conserved synteny groups confirm its common ancestry with red algae. J Mol Evol 48:236–244PubMedGoogle Scholar
  54. Durnford DG, Deane JA, Tan S, McFadden GI, Gantt E, Green BR (1999) A phylogenetic assessment of the eukaryotic light-harvesting antenna proteins, with implications for plastid evolution. J Mol Evol 48:59–68PubMedGoogle Scholar
  55. Ems SC, Morden CW, Dixon CK, Wolfe KH, dePamphilis CW, Palmer JD (1995) Transcription, splicing and editing of plastid RNAs in the nonphotosynthetic plant Epifagus virginiana. Plant Mol Biol 29:721–733PubMedGoogle Scholar
  56. Fagan TF, Hastings JW (2002) Phylogenetic analysis indicates multiple origins of chloroplast glyceraldehyde-3-phosphate dehydrogenase genes in dinoflagellates. Mol Biol Evol 19:1203–1207PubMedGoogle Scholar
  57. Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Princeton University Press, PrincetonGoogle Scholar
  58. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedGoogle Scholar
  59. Fast NM, Kissinger JC, Roos DS, Keeling PJ (2001) Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18:418–426PubMedGoogle Scholar
  60. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2002) A green algal apicoplast ancestor. Science 298:2155–2155PubMedGoogle Scholar
  61. Funes S, Davidson E, Reyes-Prieto A, Magallon S, Herion P, King MP, Gonzalez-Halphen D (2003) Response to comment on “A green algal apicoplast ancestor ” . Science 301:49bGoogle Scholar
  62. Funes S, Reyes-Prieto A, Perez-Martinez X, Gonzalez-Halphen D (2004) On the evolutionary origins of apicoplasts: revisiting the rhodophyte vs. chlorophyte controversy. Microbes Infect 6:305–311PubMedGoogle Scholar
  63. Gibbs SP (1981) The chloroplasts of some algal groups may have evolved from endosymbiotic eukaryotic algae. Ann N Y Acad Sci 361:193–208PubMedGoogle Scholar
  64. Glockner G, Rosenthal A, Valentin K (2000) The structure and gene repertoire of an ancient redalgal plastid genome. J Mol Evol 51:382–390PubMedGoogle Scholar
  65. Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351PubMedGoogle Scholar
  66. Gockel G, Hachtel W (2000) Complete gene map of the plastid genome of the nonphotosynthetic euglenoid flagellate Astasia longa. Protist 151:347–351Google Scholar
  67. Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle RiverGoogle Scholar
  68. Granum E, Myklestad SM (2001) Mobilization of β -1,3-glucan and biosynthesis of amino acids induced by NH 4+ addition to N-limited cells of the marine diatom Skeletonema costatum (Bacillariophyceae). J Phycol 37:772–782Google Scholar
  69. Gray MW, Spencer DF (1996) Organellar evolution. In: Roberts DM, Sharp P, Alderson G Collins M (eds) Evolution of microbial life (Society for General Microbiology Symposium 54). Cambridge University Press, Cambridge, pp 109– 126Google Scholar
  70. Green BR (2005) Lateral gene transfer in the cyanobacteria: Chlorophylls, proteins, and scraps of ribosomal RNA. J Phycol 41:449–452Google Scholar
  71. Green BR, Durnford DG (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Physiol Plant Mol Biol 47:685–714PubMedGoogle Scholar
  72. Griffiths DJ (2006) Chlorophyll b-containing oxygenic photosynthetic prokaryotes: Oxychlorobacteria (prochlorophytes). Bot Rev 72:330–366Google Scholar
  73. Grzebyk D, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR, Falkowski PG (2004) Response to comment on “ The evolution of modern eukaryotic phytoplankton ” . Science 306:2191cGoogle Scholar
  74. Guillou L, Chretiennot-Dinet MJ, Boulben S, Moon-van der Staay S Y, Vaulot D (1999) Symbiomonas scintillans gen. et sp nov and Picophagus flagellatus gen. et sp nov (Heterokonta): two new heterotrophic flagellates of picoplanktonic size. Protist 150:383–398PubMedGoogle Scholar
  75. Hackett JD, Yoon HS, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Nosenko T, Bhattacharya D (2004) Migration of the plastid genome to the nucleus in a peridinin dinoflag-ellate. Curr Biol 14:213–218PubMedGoogle Scholar
  76. Hackett JD, Yoon HS, Li S, Reyes-Prieto A, Rummele SE, Bhattacharya D (2007) Phylogenomic analysis supports the monophyly of cryptophytes and haptophytes and the association of Rhizaria with Chromalveolates. Mol Biol Evol 24:1702–1713PubMedGoogle Scholar
  77. Hagopian JC, Reis M, Kitajima JP, Bhattacharya D, de Oliveira MC (2004) Comparative analysis of the complete plastid genome sequence of the red alga Gracilaria tenuistipitata var. liui provides insights into the evolution of rhodoplasts and their relationship to other plastids. J Mol Evol 59:464–477PubMedGoogle Scholar
  78. Hansen G, Botes L, De Salas M (2007) Ultrastructure and large subunit rDNA sequences of Lepidodinium viride reveal a close relationship to Lepidodinium chlorophorum comb. nov (= Gymnodinium chlorophorum). Phycol Res 55:25–41Google Scholar
  79. Harper JT, Keeling PJ (2003) Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20:1730PubMedGoogle Scholar
  80. Harris JR, Adrian M, Petry F (2004) Amylopectin: a major component of the residual body in Cryptosporidium parvum oocysts. Parasitol 128:269–282Google Scholar
  81. Haugen P, Bhattacharya D, Palmer JD, Turner S, Lewis LA, Pryer KM (2007) Cyanobacterial ribosomal RNA genes with multiple, endonuclease-encoding group I introns. BMC Evol Biol 7:159PubMedGoogle Scholar
  82. Haugen P, Simon DM, Bhattacharya D (2005) The natural history of group I introns. Trends Genet 21:111–119PubMedGoogle Scholar
  83. Hausner G, Olson R, Simon D, Johnson I, Sanders ER, Karol KG, McCourt RM, Zimmerly S (2006) Origin and evolution of the chloroplast trnK (matK) intron: a model for evolution of group II intron RNA structures. Mol Biol Evol 23:380–391PubMedGoogle Scholar
  84. Hess WR, Steglich C, Lichtle C, Partensky F (1999) Phycoerythrins of the oxyphotobacterium Prochlorococcus marinus are associated to the thylakoid membrane and are encoded by a single large gene cluster. Plant Mol Biol 40:507–521PubMedGoogle Scholar
  85. Hess WR, Rocap G, Ting CS, Larimer F, Stilwagen S, Lamerdin J, Chisholm SW (2001) The photosynthetic apparatus of Prochlorococcus : insights through comparative genomics. Photosynth Res 70:53–71PubMedGoogle Scholar
  86. Hibberd DJ, Norris RE (1984) Cytology and ultrastructure of Chlorarachnion reptans (Chlorarachniophyta divisio nova, Chlorarachniophyceae classis nova). J Phycol 20:310–330Google Scholar
  87. Hirokawa Y, Fujiwara S, Suzuki M, Akiyama T, Sakamoto M, Kobayashi S, Tsuzuki M (2007) Structural and physiological studies on the storage β -polyglucan of haptophyte Pleurochrysis haptonemofera. Planta 227:589–599PubMedGoogle Scholar
  88. Hoef-Emden K, Melkonian M (2003) Revision of the genus Cryptomonas (Cryptophyceae): a combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist 154:371–409PubMedGoogle Scholar
  89. Hoef-Emden K, Marin B, Melkonian M (2002) Nuclear and nucleomorph SSU rDNA phylogeny in the cryptophyta and the evolution of cryptophyte diversity. J Mol Evol 55:161–179PubMedGoogle Scholar
  90. Hopkins J, Fowler R, Krishna S, Wilson I, Mitchell G, Bannister L (1999) The plastid in Plasmodium falciparum asexual blood stages: a three-dimensional ultrastructural analysis. Protist 150:283–295PubMedGoogle Scholar
  91. Horiguchi T, Takano Y (2006) Serial replacement of a diatom endosymbiont in the marine dino-flagellate Peridinium quinquecorne (Peridiniales, Dinophyceae). Phycol Res 54:193–200Google Scholar
  92. Imanian B, Keeling PJ (2007) The dinoflagellates Durinskia baltica and Kryptoperidinium foliaceum retain functionally overlapping mitochondria from two evolutionarily distinct line ages. BMC Evol Biol 7:172PubMedGoogle Scholar
  93. Inagaki Y, Simpson AGB, Dacks JB, Roger AJ (2004) Phylogenetic artifacts can be caused by leucine, serine, and arginine codon usage heterogeneity: dinoflagellate plastid origins as a case study. Syst Biol 53:582–593PubMedGoogle Scholar
  94. Ishida K, Green BR (2002) Second- and third-hand chloroplasts in dinoflagellates: Phylogeny of oxygen-evolving enhancer 1 (PsbO) protein reveals replacement of a nuclear-encoded plastid gene by that of a haptophyte tertiary endosymbiont. Proc Natl Acad Sci USA 99:9294–9299PubMedGoogle Scholar
  95. Janse I, Van Rijssel M, Van Hall PJ, Gerwig GJ, Gottschal JC, Prins RA (1996) The storage glucan of Phaeocystis globosa (Prymnesiophyceae) cells. J Phycol 32:382–387Google Scholar
  96. Jarvis P, Soll M (2001) Toc, Tic, and chloroplast protein import. Biochim Biophys Acta 1541:64–79PubMedGoogle Scholar
  97. Joyce PBM, Gray MW (1989) Chloroplast-like transfer RNA genes expressed in wheat mitochondria. Nucleic Acids Res 17:5461–5476PubMedGoogle Scholar
  98. Karpov SA, Sogin ML, Silberman JD (2001) Rootlet homology, taxonomy, and phylogeny of bicosoecids based on 18S rRNA gene sequences. Protistology 2:34–47Google Scholar
  99. Katz ME, Finkel Z V, Grzebyk D, Knoll AH, Falkowski PG (2004) Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annu Rev Ecol Evol Syst 35:523–556Google Scholar
  100. Keeling PJ, Archibald JM, Fast NM, Palmer JD (2004) Comment on “ The evolution of modern eukaryotic phytoplankton”. Science 306:2191bGoogle Scholar
  101. Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW (2005) The tree of eukaryotes. Trends Ecol Evol 20:670–676PubMedGoogle Scholar
  102. Khan H, Archibald JM (2008) Lateral transfer of introns in the cryptophyte plastid genome. Nucleic Acids Res 36:3043–3053PubMedGoogle Scholar
  103. Khan H, Parks N, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM (2007) Plastid genome sequence of the cryptophyte alga Rhodomonas salina CCMP1319: lateral transfer of putative DNA replication machinery and a test of chromist plastid phylogeny. Mol Biol Evol 24:1832–1842PubMedGoogle Scholar
  104. Kim E, Simpson AGB, Graham LE (2006) Evolutionary relationships of apusomonads inferred from taxon-rich analyses of 6 nuclear encoded genes. Mol Biol Evol 23:2455–2466PubMedGoogle Scholar
  105. Kiss JZ, Triemer RE (1988) A comparative study of the storage carbohydrate granules from Euglena (Euglenida) and Pavlova (Prymnesiida). J Protozool 35:237–241Google Scholar
  106. Kiss JZ, Vasconcelos AC, Triemer RE (1986) Paramylon synthesis and chloroplast structure associated with nutrient levels in Euglena (Euglenophyceae). J Phycol 22:327–333Google Scholar
  107. Kiss JZ, Vasconcelos AC, Triemer RE (1987) Structure of the euglenoid storage carbohydrate, paramylon. Am J Bot 74:877–882Google Scholar
  108. Kiss JZ, Roberts EM, Brown RM, Triemer RE (1988) X-ray and dissolution studies of paramylon storage granules from Euglena. Protoplasma 146:150–156Google Scholar
  109. Kohler S (2005) Multi-membrane-bound structures of Apicomplexa: I. The architecture of the Toxoplasma gondii apicoplast. Parasitol Res 96:258–272PubMedGoogle Scholar
  110. Kohler S, Delwiche CF, Denny PW, Tilney LG, Webster P, Wilson RJM, Palmer JD, Roos DS (1997) A plastid of probable green algal origin in apicomplexan parasites. Science 275:1485–1489PubMedGoogle Scholar
  111. Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M, Koike K, Ogata T (2005) A novel type of kleptoplastidy in Dinophysis (Dinophyceae): presence of haptophyte-type plastid in Dinophysis mitra. Protist 156:225–237PubMedGoogle Scholar
  112. Kroth PG, Schroers Y, Kilian O (2005) The peculiar distribution of class I and class II aldolases in diatoms and in red algae. Curr Genet 48:389–400PubMedGoogle Scholar
  113. Kuhn S, Medlin L, Eller G (2004) Phylogenetic position of the parasitoid nanoflagellate pirsonia inferred from nuclear-encoded small subunit ribosomal DNA and a description of Pseudopirsonia n. gen. and Pseudopirsonia mucosa (Drebes) comb. nov. Protist 155: 143–156PubMedGoogle Scholar
  114. La Roche J, van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM, Larkum AWD, Green BR (1996) Independent evolution of the prochloro-phyte and green plant chlorophyll a/b light-harvesting proteins. Proc Natl Acad Sci USA 93:15244–15248PubMedGoogle Scholar
  115. Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35PubMedGoogle Scholar
  116. Larkum AWD, Scaramuzzi C, Cox GC, Hiller RG, Turner AG (1994) Light-harvesting chlorophyll c -like pigment in Prochloron. Proc Natl Acad Sci USA 91:679–683PubMedGoogle Scholar
  117. Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195PubMedGoogle Scholar
  118. Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12:251–258PubMedGoogle Scholar
  119. Leander BS, Keeling PJ (2003) Morphostasis in alveolate evolution. Trends Ecol Evol 18:395–402Google Scholar
  120. Leander BS, Kuvardina ON, Aleshin V V, Mylnikov AP, Keeling PJ (2003) Molecular phylogeny and surface morphology of Colpodella edax (Alveolata): insights into the phagotrophic ancestry of apicomplexans. J Eukaryot Microbiol 50:334–340PubMedGoogle Scholar
  121. Lee JJ, Leedale GF, Bradbury P (2000) The illustrated guide to the protozoa. Society of Protozoologists, LawrenceGoogle Scholar
  122. Lee RE, Kugrens P (1991) Katablepharis ovalis , a colorless flagellate with interesting cytological characteristics. J Phycol 27:505–513Google Scholar
  123. Lohan AJ, Wolfe KH (1998) A subset of conserved tRNA genes in plastid DNA of nongreen plants. Genet 150:425–433Google Scholar
  124. Lukavsky J, Cepak V (1992) DAPI fluorescent staining of DNA material in cyanelles of the rhizo-pod Paulinella chromatophora Lauterb. Arch Protistenkd 142:207–212 Maier UG, Fraunholz M, Zauner S, Penny S, Douglas S (2000) A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators. Mol Biol Evol 17:576–583Google Scholar
  125. Maier UG, Fraunholz M, Zauner S, Penny S, Douglas S (2000) A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators. Mol Biol Evol 17:576–583PubMedGoogle Scholar
  126. Marchessault RH, Deslandes Y (1979) Fine structure of (1– 3) β -D-glucans: Curdlan and paramylon. Carbohydr Res 75:231–242Google Scholar
  127. Marin B, Nowack ECM, Melkonian M (2005) A plastid in the making: primary endosymbiosis. Protist 156:425–432PubMedGoogle Scholar
  128. Marin B, Nowack ECM, Glockner G, Melkonian M (2007) The ancestor of the Paulinella chro-matophore obtained a carboxysomal operon by horizontal gene transfer from a Nitrococcus-like gamma-proteobacterium. BMC Evol Biol 7:85PubMedGoogle Scholar
  129. Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D (2002) Evolutionary analysis of Arabidopsis , cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci USA 99:12246–12251PubMedGoogle Scholar
  130. Maul JE, Lilly JW, Cui LY, dePamphilis CW, Miller W, Harris EH, Stern DB (2002) The Chlamydomonas reinhardtti plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14:2659–2679PubMedGoogle Scholar
  131. Mazumdar J, Wilson EH, Masek K, Hunter CA, Striepen B (2006) Apicoplast fatty acid synthesis is essential for organelle biogenesis and parasite survival in Toxoplasma gondii. Proc Natl Acad Sci USA 103:13192–13197PubMedGoogle Scholar
  132. McFadden GI (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959Google Scholar
  133. McFadden GI, Roos DS (1999) Apicomplexan plastids as drug targets. Trends Microbiol 7:328–333PubMedGoogle Scholar
  134. McFadden GI, van Dooren GG (2004) Evolution: red algal genome affirms a common origin of all plastids. Curr Biol 14:R514–R516PubMedGoogle Scholar
  135. McFadden GI, Gilson PR, Douglas SE (1994) The photosynthetic endosymbiont in cryptomonad cells produces both chloroplast and cytoplasmic-type ribosomes. J Cell Sci 107:649–657PubMedGoogle Scholar
  136. McFadden GI, Gilson PR, Sims IM (1997) Preliminary characterization of carbohydrate stores from chlorarachniophytes (division: Chlorarachniophyta). Phycol Res 45:145–151Google Scholar
  137. Mereschkowsky C (1905) über natur und ursprung der chromatophoren im pflanzenreiche. Biol Centralbl 25:593–604Google Scholar
  138. Minnhagen S, Janson S (2006) Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiol Ecol 57:47–54PubMedGoogle Scholar
  139. Miyashita H, Ikemoto H, Kurano N, Miyachi S, Chihara M (2003) Acaryochloris marina gen. et sp nov (Cyanobacteria), an oxygenic photosynthetic prokaryote containing Chl d as a major pigment. J Phycol 39:1247–1253Google Scholar
  140. Moestrup O, Sengco M (2001) Ultrastructural studies on Bigelowiella natans gen. et sp. nov., a chlorarachniophyte flagellate. J Phycol 37:624–646Google Scholar
  141. Moore RB, Obornik M, Janouskovec J, Chrudimsky T, Vancova M, Green DH, Wright SW, Davies NW, Bolch CJS, Heimann K, Slapeta J, Hoegh-Guldberg O, Logsdon JM, Carter DA (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963PubMedGoogle Scholar
  142. Morden CW, Golden SS (1989) psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Nature 337:382–385PubMedGoogle Scholar
  143. Morden CW, Delwiche CF, Kuhsel M, Palmer JD (1992) Gene phylogenies and the endosymbiotic origin of plastids. Biosystems 28:75–90PubMedGoogle Scholar
  144. Moriya M, Nakayama T, Inouye I (2000) Ultrastructure and 18S rDNA sequence analysis of Wobblia lunata gen. et an. nov., a new heterotrophic flagellate (stramenopiles, Incertae sedis). Protist 151:41–55PubMedGoogle Scholar
  145. Moriya M, Nakayama T, Inouye I (2002) A new class of the stramenopiles, Placididea classis nova: description of Placidia cafeteriopsis gen. et sp nov. Protist 153:143–156PubMedGoogle Scholar
  146. Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCO in dino-flagellates. Science 268:1622–1624PubMedGoogle Scholar
  147. Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303:1633PubMedGoogle Scholar
  148. Nakamura Y, Takahashi J, Sakurai A, Inaba Y, Suzuki E, Nihei S, Fujiwara S, Tsuzuki M, Miyashita H, Ikemoto H, Kawachi M, Sekiguchi H, Kurano N (2005) Some cyanobacteria synthesize semi-amylopectin type α -polyglucans instead of glycogen. Plant Cell Physiol 46:539–545PubMedGoogle Scholar
  149. Nelson MJ, Dang YK, Filek E, Zhang ZD, Yu VWC, Ishida K, Green BR (2007) Identification and transcription of transfer RNA genes in dinoflagellate plastid minicircles. Gene 392:291–298PubMedGoogle Scholar
  150. Nikolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci USA 101:8066–8071PubMedGoogle Scholar
  151. Not F, Valentin K, Romari K, Lovejoy C, Massana R, Tobe K, Vaulot D, Medlin LK (2007) Picobiliphytes: a marine picoplanktonic algal group with unknown affinities to other eukaryo-tes. Science 315:253–255PubMedGoogle Scholar
  152. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K (2002) The complete sequence of the rice ( Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics 268:434–445PubMedGoogle Scholar
  153. Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418PubMedGoogle Scholar
  154. Nozaki H, Matsuzaki M, Takahara M, Misumi O, Kuroiwa H, Hasegawa M, Shin-i T, Kohara Y, Ogasawara N, Kuroiwa T (2003) The phylogenetic position of red algae revealed by multiple nuclear genes from mitochondria-containing eukaryotes and an alternative hypothesis on the origin of plastids. J Mol Evol 56:485–497PubMedGoogle Scholar
  155. Nudelman MA, Rossi MS, Conforti V, Triemer RE (2003) Phylogeny of Euglenophyceae based on small subunit rDNA sequences: taxonomic implications. J Phycol 39:226–235Google Scholar
  156. Ohta N, Matsuzaki M, Misumi O, Miyagishima S, Nozaki H, Tanaka K, Shin-i T, Kohara Y, Kuroiwa T (2003) Complete sequence and analysis of the plastid genome of the unicellular red alga Cyanidioschyzon merolae. DNA Res 10:67–77PubMedGoogle Scholar
  157. Okamoto N, Inouye I (2005) The katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156:163–179PubMedGoogle Scholar
  158. Oldenburg DJ, Bendich AJ (2004) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970PubMedGoogle Scholar
  159. Oudot-Le Secq MP, Grimwood J, Shapiro H, Armbrust EV, Bowler C, Green BR (2007) Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: comparison with other plastid genomes of the red lineage. Mol Genet Genomics 277:427–439PubMedGoogle Scholar
  160. Palmer JD (2003) The symbiotic birth and spread of plastids: How many times and whodunit? J Phycol 39:4–11Google Scholar
  161. Palmer JD, Nugent JM, Herbon LA (1987) Unusual structure of Geranium chloroplast DNA: a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and 2 repea families. Proc Natl Acad Sci USA 84:769–773PubMedGoogle Scholar
  162. Patron NJ, Keeling PJ (2005) Common evolutionary origin of starch biosynthetic enzymes in green and red algae. J Phycol 41:1131–1141Google Scholar
  163. Patron NJ, Inagaki Y, Keeling PJ (2007) Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Curr Biol 17:887–891PubMedGoogle Scholar
  164. Petersen J, Teich R, Brinkmann H, Cerff R (2006) A “ green ” phosphoribulokinase in complex algae with red plastids: Evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol 62:143–157PubMedGoogle Scholar
  165. Prechtl J, Kneip C, Lockhart P, Wenderoth K, Maier UG (2004) Intracellular spheroid bodies of Rhopalodia gibba have nitrogen-fixing apparatus of cyanobacterial origin. Mol Biol Evol 21:1477–1481PubMedGoogle Scholar
  166. Preisig HR, Hibberd DJ (1983) Ultrastructure and taxonomy of Paraphysomonas (Chrysophyceae) and related genera, part 3. Nordic J Bot 3:695–723Google Scholar
  167. Puerta MVS, Bachvaroff TR, Delwiche CF (2005) The complete plastid genome sequence of the haptophyte Emiliania huxleyi : a comparison to other plastid genomes. DNA Res 12:151–156Google Scholar
  168. Raven JA (2005) Cellular location of starch synthesis and evolutionary origin of starch genes. J Phycol 41:1070–1072Google Scholar
  169. Reid PC, Lancelot C, Gieskes WWC, Hagmeier E, Weichart G (1990) Phytoplankton of the North Sea and its dynamics: a review. Neth J Sea Res 26:295–331Google Scholar
  170. Reith M, Munholland J (1993) The ribosomal RNA repeats are nonidentical and directly oriented in the chloroplast genome of the red alga Porphyra purpurea. Curr Genet 24:443–450PubMedGoogle Scholar
  171. Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4:31PubMedGoogle Scholar
  172. Rissler HM, Durnford DG (2005) Isolation of a novel carotenoid-rich protein in Cyanophora par-adoxa that is immunologically related to the light-harvesting complexes of photosynthetic eukaryotes. Plant Cell Physiol 46:416–424PubMedGoogle Scholar
  173. Rodriguez-Ezpeleta N, Brinkmann H, Burey SC, Roure B, Burger G, Loffelhardt W, Bohnert HJ, Philippe H, Lang BF (2005) Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol 15:1325–1330PubMedGoogle Scholar
  174. Rogers MB, Gilson PR, Su V, McFadden GI, Keeling PJ (2007) The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans : evidence for independent origins of chlorar-achniophyte and euglenid secondary endosymbionts. Mol Biol Evol 24:54–62PubMedGoogle Scholar
  175. Rosenblad MA, Samuelsson T (2004) Identification of chloroplast signal recognition particle RNA genes. Plant Cell Physiol 45:1633–1639PubMedGoogle Scholar
  176. Rumpho ME, Summer EJ, Manhart JR (2000) Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. Plant Physiol 123:29–38PubMedGoogle Scholar
  177. Saldarriaga JF, McEwan ML, Fast NM, Taylor FJR, Keeling PJ (2003) Multiple protein phylogen-les show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53:355–365PubMedGoogle Scholar
  178. Sanchez-Puerta M V, Bachvaroff TR, Delwiche CF (2007) Sorting wheat from chaff in multi-gene analyses of chlorophyll c-containing plastids. Mol Phylogenet Evol 44:885–897PubMedGoogle Scholar
  179. Scherer S, Herrmann G, Hirschberg J, Boger P (1991) Evidence for multiple xenogenous origins of plastids: Comparison of psbA -genes with a xanthophyte sequence. Curr Genet 19:503–507PubMedGoogle Scholar
  180. Schimper AFW (1885) Untersuchungen ü ber die Chlorophyllk ö rner und die ihnen homologen Gebilde. Jahrb Wiss Bot 16:1–247Google Scholar
  181. Schnepf E, Elbrachter M (1999) Dinophyte chloroplasts and phylogeny: a review. Grana 38:81–97Google Scholar
  182. Schweiker M, Elbrachter M (2004) First ultrastructural investigations of the consortium between a phototrophic eukaryotic endocytobiont and Podolampas bipes (Dinophyceae). Phycologia 43:614–623Google Scholar
  183. Sekiguchi H, Moriya M, Nakayama T, Inouye I (2002) Vestigial chloroplasts in heterotrophic stramenopiles Pteridomonas danica and Ciliophrys infusionum (Dictyochophyceae). Protist 153:157–167PubMedGoogle Scholar
  184. Sheveleva EV, Hallick RB (2004) Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res 32:803–810PubMedGoogle Scholar
  185. Sheveleva EV, Giordani N V, Hallick RB (2002) Identification and comparative analysis of the chloroplast alpha-subunit gene of DNA-dependent RNA polymerase from seven Euglena species. Nucleic Acids Res 30:1247–1254PubMedGoogle Scholar
  186. Shimonaga T, Fujiwara S, Kaneko M, Izumo A, Nihei S, Francisco PB, Satoh A, Fujita N, Nakamura Y, Tsuzuki M (2007) Variation in storage alpha-polyglucans of red algae: amylose and semi-amylopectin types in Porphyridium and glycogen type in Cyanidium. Mar Biotechnol 9:192–202PubMedGoogle Scholar
  187. Simon D, Fewer D, Friedl T, Bhattacharya D (2003) Phylogeny and self-splicing ability of the plastid tRNA-Leu group I intron. J Mol Evol 57:710–720PubMedGoogle Scholar
  188. Six C, Worden AZ, Rodriguez F, Moreau H, Partensky F (2005) New insights into the nature and phylogeny of prasinophyte antenna proteins: Ostreococcus tauri , a case study. Mol Biol Evol 22:2217–2230PubMedGoogle Scholar
  189. Stiller JW (2007) Plastid endosymbiosis, genome evolution and the origin of green plants. Trends Plant Sci 12:391–396PubMedGoogle Scholar
  190. Stiller JW, Hall BD (1997) The origin of red algae: Implications for plasmid evolution. Proc Natl Acad Sci USA 94:4520–4525PubMedGoogle Scholar
  191. Stiller JW, Reel DC, Johnson JC (2003) A single origin of plastids revisited: convergent evolution in organellar genome content. J Phycol 39:95–105Google Scholar
  192. Stirewalt VL, Michalowski CB, Loffelhardt W, Bohnert HJ, Bryant DA (1995) Nucleotide sequence of the cyanelle genome from Cyanophora paradoxa. Plant Mol Biol Rep 13:327–332Google Scholar
  193. Stoebe B, Kowallik KV (1999) Gene-cluster analysis in chloroplast genomics. Trends Genet 15:344–347PubMedGoogle Scholar
  194. Stoebe B, Martin W, Kowallik KV (1998) Distribution and nomenclature of protein-coding genes in 12 sequenced chloroplast genomes. Plant Mol Biol Rep 16:243–255Google Scholar
  195. Takishita K, Koike K, Maruyama T, Ogata T (2002) Molecular evidence for plastid robbery (Kleptoplastidy) in Dinophysis , a dinoflagellate causing diarrhetic shellfish poisoning. Protist 153:293–302PubMedGoogle Scholar
  196. Takishita K, Ishida K, Maruyama T (2003) An enigmatic GAPDH gene in the symbiotic dinoflagellate genus Symbiodinium and its related species (the order suessiales): possible lateral gene transfer between two eukaryotic algae, dinoflagellate and euglenophyte. Protist 154:443–454PubMedGoogle Scholar
  197. Takishita K, Ishida KI, Maruyama T (2004) Phylogeny of nuclear-encoded plastid-targeted GAPDH gene supports separate origins for the peridinin- and the fucoxanthin derivative-containing plastids of dinoflagellates. Protist 155:447–458PubMedGoogle Scholar
  198. Takishita K, Ishida KI, Ishikura M, Maruyama T (2005) Phylogeny of the psbC gene, coding a photosystem II component CP 43 , suggests separate origins for the peridinin- and fucoxanthin derivative-containing plastids of dinoflagellates. Phycologia 44:26–34Google Scholar
  199. Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, Nozaki H (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43:1302–1309Google Scholar
  200. Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J (2007) Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158:263–276PubMedGoogle Scholar
  201. Teles-Grilo ML, Tato-Costa J, Duarte SM, Maia A, Casal G, Azevedo C (2007) Is there a plastid in Perkinsus atlanticus (phylum Perkinsozoa)? Eur J Protistol 43:163–167PubMedGoogle Scholar
  202. Theissen U, Martin W (2006) The difference between organelles and endosymbionts. Curr Biol 16:R1016–R1017PubMedGoogle Scholar
  203. Thompson MD, Copertino DW, Thompson E, Favreau MR, Hallick RB (1995) Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena. Nucleic Acids Res 23:4745–4752PubMedGoogle Scholar
  204. Tomitani A, Okada K, Miyashita H, Matthijs HCP, Ohno T, Tanaka A (1999) Chlorophyll b and phycobilins in the common ancestor of cyanobacteria and chloroplasts. Nature 400:159–162PubMedGoogle Scholar
  205. Tomova C, Geerts WJC, Muller-Reichert T, Entzeroth R, Humbel BM (2006) New comprehension of the apicoplast of Sarcocystis by transmission electron tomography. Biol Cell 98:535–545PubMedGoogle Scholar
  206. Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol 54:66–72PubMedGoogle Scholar
  207. Turmel M, Otis C, Lemieux C (2005) The complete chloroplast DNA sequences of the charophycean green algae Staurastrum and Zygnema reveal that the chloroplast genome underwent extensive changes during the evolution of the Zygnematales. BMC Biol 3:22PubMedGoogle Scholar
  208. van Dooren GG, Schwartzbach SD, Osafune T, McFadden GI (2001) Translocation of proteins across the multiple membranes of complex plastids. Biochim Biophys Acta 1541:34–53PubMedGoogle Scholar
  209. Viola R, Nyvall P, Pedersen M (2001) The unique features of starch metabolism in red algae. Proc R Soc Lond Ser B Biol Sci 268:1417–1422Google Scholar
  210. Vogel K, Meeuse BJD (1968) Characterization of the reserve granules from the dinoflagellate Thecadinium inclinatum Balech. J Phycol 4:317–318Google Scholar
  211. Von der Heyden S, Chao EE, Cavalier-Smith T (2004) Genetic diversity of goniomonads: an ancient divergence between marine and freshwater species. Eur J Phycol 39:343–350Google Scholar
  212. Wakasugi T, Nagai T, Kapoor M, Sugita M, Ito M, Ito S, Tsudzuki J, Nakashima K, Tsudzuki T, Suzuki Y, Hamada A, Ohta T, Inamura A, Yoshinaga K, Sugiura M (1997) Complete nucleo-tide sequence of the chloroplast genome from the green alga Chlorella vulgaris : the existence of genes possibly involved in chloroplast division. Proc Natl Acad Sci USA 94:5967–5972PubMedGoogle Scholar
  213. Waller RF, Keeling PJ, van Dooren GG, McFadden GI (2003) Comment on “ A green algal apico-plast ancestor”. Science 301:49aGoogle Scholar
  214. Walsby AE (1986) Prochlorophytes: Origins of chloroplasts. Nature 320:212–215Google Scholar
  215. Wang D, Wu YW, Shih ACC, Wu CS, Wang YN, Chaw SM (2007) Transfer of chloroplast genomic DNA to mitochondrial genome occurred at least 300 MYA. Mol Biol Evol 24:2040–2048PubMedGoogle Scholar
  216. Wilcox LW, Wedemayer GJ (1984) Gymnodinium acidotum Nygaard (Pyrrophyta), a dinoflagel-late with an endosymbiotic cryptomonad. J Phycol 20:236–242Google Scholar
  217. Wilhelm C (1987) Purification and identification of chlorophyll- c1 from the green alga Mantoniella squamata. Biochim Biophys Acta 892:23–29Google Scholar
  218. Wolfe KH, Morden CW, Palmer JD (1992) Function and evolution of a minimal plastid genome from a nonphotosynthetic parasitic plant. Proc Natl Acad Sci USA 89:10648–10652PubMedGoogle Scholar
  219. Yoon HS, Hackett JD, Bhattacharya D (2002a) A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci USA 99:11724–11729Google Scholar
  220. Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002b) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512Google Scholar
  221. Yoon HS, Reyes-Prieto A, Melkonian M, Bhattacharya D (2006) Minimal plastid genome evolution in the Paulinella endosymbiont. Curr Biol 16:R670–R672PubMedGoogle Scholar
  222. Yu SK, Blennow A, Bojko M, Madsen F, Olsen CE, Engelsen SB (2002) Physico-chemical characterization of floridean starch of red algae. Starch 54:66–74Google Scholar
  223. Zapata M, Garrido JL (1997) Occurrence of phytylated chlorophyll c in Isochrysis galbana and Isochrysis sp. (Clone T-ISO) (Prymnesiophyceae). J Phycol 33:209–214Google Scholar
  224. Zeidner G, Preston CM, Delong EF, Massana R, Post AF, Scanlan DJ, Beja O (2003) Molecular diversity among marine picophytoplankton as revealed by psbA analyses. Environ Microbiol 5:212–216PubMedGoogle Scholar
  225. Zhang ZD, Cavalier-Smith T, Green BR (2002) Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol 19:489–500PubMedGoogle Scholar
  226. Zimmerly S, Hausner G, Wu XC (2001) Phylogenetic relationships among group II intron ORFs. Nucleic Acids Res 29:1238–1250PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • E. Kim
    • 1
  • J. M. Archibald
    • 1
  1. 1.Department of Biochemistry and Molecular Biology , Canadian Institute for Advanced ResearchDalhousie UniversityHalifaxCanada

Personalised recommendations