The Place of Literature-Based Discovery in Contemporary Scientific Practice

  • Neil R. Smalheiser
  • Vetle I. Torvik
Part of the Information Science and Knowledge Management book series (ISKM, volume 15)


In this brief essay, we consider some of the lessons that we learned from our experience working with the Arrowsmith consortium that may have implications for the field of literature-based discovery (LBD) as a whole.


Literature-based discovery Informatics Text mining Hypothesis generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Smalheiser, N. R.: The Arrowsmith project: 2005 status report. In: Conference on Discovery Science 2005. Lecture Notes in Artificial Intelligence, vol. 3735, eds. A. Hoffmann, H. Motoda, and T. Scheffer, Springer, Berlin Heidelberg New York (2005) 26–43Google Scholar
  2. 2.
    Smalheiser, N. R., Torvik, V. I., Bischoff-Grethe, A., Burhans, L. B., Gabriel, M., Homayouni, R., Kashef, A., Martone, M. E., Perkins, G. A., Price, D. L., Talk, A. C., West, R.: Collaborative development of the Arrowsmith two-node search interface designed for laboratory investigators. J. Biomed. Discov. Collab. 1 (2006) 8CrossRefGoogle Scholar
  3. 3.
    Torvik, V. I., Smalheiser, N. R.: A quantitative model for linking two disparate sets of articles in Medline. Bioinformatics 23 (2007) 1658–1665CrossRefGoogle Scholar
  4. 4.
    Swanson, D. R., Smalheiser, N. R.: An interactive system for finding complementary literatures: a stimulus to scientific discovery. Artif. Intell. 91 (1997) 183–203MATHCrossRefGoogle Scholar
  5. 5.
    Bekhuis, T.: Conceptual biology, hypothesis discovery, and text mining: Swanson’s legacy. Biomed. Digit. Libr. 3 (2006) 2CrossRefGoogle Scholar
  6. 6.
    Jensen, L. J., Saric, J., Bork, P.: Literature mining for the biologist: from information retrieval to biological discovery. Nat. Rev. Genet. 7 (2006) 119–129CrossRefGoogle Scholar
  7. 7.
    Weeber, M., Kors, J. A., Mons, B.: Online tools to support literature-based discovery in the life sciences. Brief. Bioinform. 6 (2005) 277–286CrossRefGoogle Scholar
  8. 8.
    Hristovski, D., Peterlin, B., Mitchell, J. A., Humphrey, S. M.: Using literature-based discovery to identify disease candidate genes. Int. J. Med. Inform. 74 (2005) 289–298CrossRefGoogle Scholar
  9. 9.
    Skeels, M. M., Henning, K., Yetisgen-Yildiz, M., Pratt, W.: Interaction Design for Literature-Based Discovery. Proceedings of the ACM International Conference on Human Factors in Computing Systems (CHI 2005), Portland, ORGoogle Scholar
  10. 10.
    Wren, J. D.: Extending the mutual information measure to rank inferred literature relationships. BMC Bioinformatics 5 (2004) 145CrossRefGoogle Scholar
  11. 11.
    Srinivasan, P., Libbus, B.: Mining MEDLINE for implicit links between dietary substances and diseases. Bioinformatics 20 Suppl 1 (2004) I290–I296CrossRefGoogle Scholar
  12. 12.
    Wren, J. D., Bekeredjian, R., Stewart, J. A., Shohet, R. V., Garner, H. R.: Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics 20 (2004) 389–398CrossRefGoogle Scholar
  13. 13.
    Srinivasan, P.: Text Mining: Generating hypotheses from MEDLINE. J. Am. Soc. Inf. Sci. Technol. 55 (2004) 396–413CrossRefGoogle Scholar
  14. 14.
    Weeber, M., Vos, R., Klein, H., De Jong-Van Den Berg, L. T., Aronson, A. R., Molema, G.: Generating hypotheses by discovering implicit associations in the literature: a case report of a search for new potential therapeutic uses for thalidomide. J. Am. Med. Inform. Assoc. 10 (2003) 252–259CrossRefGoogle Scholar
  15. 15.
    Weeber, M., Vos, R., Baayen, R. H.: Using concepts in literature-based discovery: simulating Swanson’s Raynaud–fish oil and migraine–magnesium discoveries. J. Am. Soc. Inf. Sci. Technol. 52 (2001) 548–557CrossRefGoogle Scholar
  16. 16.
    Valdes-Perez, R. E.: Principles of human-computer collaboration for knowledge discovery in science. Artif. Intell. 107 (1999) 335–346MATHCrossRefGoogle Scholar
  17. 17.
    Kostoff, R. N.: Science and technology innovation. Technovation 19 (1999) 593–604CrossRefGoogle Scholar
  18. 18.
    Smalheiser, N. R., Swanson, D. R.: Using ARROWSMITH: a computer-assisted approach to formulating and assessing scientific hypotheses. Comput. Methods Programs Biomed. 57 (1998) 149–153CrossRefGoogle Scholar
  19. 19.
    Swanson, D. R.: Undiscovered public knowledge. Libr. Q. 56 (1986) 103–118CrossRefGoogle Scholar
  20. 20.
    Smalheiser, N. R., Swanson, D. R.: Assessing a gap in the biomedical literature: magnesium deficiency and neurologic disease. Neurosci. Res. Commun. 15 (1994) 1–9Google Scholar
  21. 21.
    Smalheiser, N. R., Manev, H., Costa, E.: RNAi and Memory: Was McConnell on the right track after all? Trends Neurosci. 24 (2001) 216–218CrossRefGoogle Scholar
  22. 22.
    Smalheiser, N. R.: Predicting emerging technologies with the aid of text-based data mining: the micro approach. Technovation 21 (2001) 689–693CrossRefGoogle Scholar
  23. 23.
    Swanson, D. R., Smalheiser, N. R., Bookstein, A.: Information discovery from complementary literatures: categorizing viruses as potential weapons. J. Am. Soc. Inf. Sci. Technol. 52 (2001) 797–812CrossRefGoogle Scholar
  24. 24.
    Smalheiser, N. R.: Bath toys: a source of gastrointestinal infection. N. Engl. J. Med. 350 (2003) 521CrossRefGoogle Scholar
  25. 25.
    Fuller, S. S., Revere, D., Bugni, P. F., Martin, G. M.: A knowledgebase system to enhance scientific discovery: Telemakus. Biomed. Digit. Libr. 1 (2004) 2CrossRefGoogle Scholar
  26. 26.
    Kostoff, R. N., Braun, T., Schubert, A., Toothman, D. R., Humenik, J. A.: Fullerene data mining using bibliometrics and database tomography. J. Chem. Inf. Comput. Sci. 40 (2000) 19–39Google Scholar
  27. 27.
    Smalheiser, N. R., Torvik, V. I.: Mammalian microRNAs derived from genomic repeats. Trends Genet. 21 (2005) 322–326CrossRefGoogle Scholar
  28. 28.
    Smalheiser, N. R., Torvik, V. I.: Alu elements within human mRNAs are probable microRNA targets. Trends Genet. 22 (2006) 532–536CrossRefGoogle Scholar
  29. 29.
    Petukhova, O. A., Mittenberg, A. G., Kulichkova, V. A., Kozhukharova, I. V., Ermolaeva, I. uB., Gauze, L. N., Konstantinova, I. M.: A new class of small RNP (alpha-RNP) containing antisense RNA in K-562 cells. IV. The coordinated regulation of the expression of Alu-containing mRNA and alpha-RNA during differentiation. Ontogenez 28 (1997) 437–444Google Scholar
  30. 30.
    Daskalova, E., Baev, V., Rusinov, V., Minkov, I.: Sites and mediators of network miRNA-based regulatory interactions. Evol. Bioinform. Online 2 (2006) 99–116Google Scholar
  31. 31.
    Swanson D. R.: Intervening in the life cycles of scientific knowledge. Libr. Trends 41 (1993) 606–631Google Scholar
  32. 32.
    Swanson D. R.: Migraine and magnesium: eleven neglected connections. Perspect. Biol. Med. 31 (1998) 526–557Google Scholar
  33. 33.
    Swanson D. R.: Fish oil, Raynaud’s syndrome, and undiscovered public knowledge. Perspect. Biol. Med. 30 (1996) 7–18Google Scholar
  34. 34.
    Swanson, D. R., Smalheiser, N. R., Bookstein, A.: Information discovery from complementary literatures: categorizing viruses as potential weapons. J. Am. Soc. Inf. Sci. Technol. 52 (2001) 797–812CrossRefGoogle Scholar
  35. 35.
    Homayouni, R., Heinrich, K., Wei, L., Berry, M. W.: Gene clustering by latent semantic indexing of MEDLINE abstracts. Bioinformatics 21 (2005) 104–115CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Neil R. Smalheiser
    • 1
  • Vetle I. Torvik
    • 1
  1. 1.UIC Psychiatric Institute MC912ChicagoUSA

Personalised recommendations