Explicit State Model Checking for Graph Grammars

  • Arend Rensink
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065)

Abstract

In this paper we present the philosophy behind the GROOVE project, in which graph transformation is used as a modelling formalism on top of which a model checking approach to software verification is being built. We describe the basic formalism, the current state of the project, and (current and future) challenges.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baldan, P., Corradini, A., König, B.: Verifying finite-state graph grammars: An unfolding-based approach. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 83–98. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Baldan, P., Corradini, A., König, B., Lluch-Lafuente, A.: A temporal graph logic for verification of graph transformation systems. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 1–20. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Baldan, P., König, B.: Approximating the behaviour of graph transformation systems. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 14–29. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker Blast. STTT 9(5-6), 505–525 (2007)CrossRefGoogle Scholar
  5. 5.
    Dill, D.L.: The murφ verification system. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)Google Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.H.: Theory of constraints and application conditions: From graphs to high-level structures. Fundam. Inform. 74(1), 135–166 (2006)MathSciNetMATHGoogle Scholar
  7. 7.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamental theory for typed attributed graphs and graph transformation based on adhesive HLR categories. Fundam. Inform. 74(1), 31–61 (2006)MathSciNetMATHGoogle Scholar
  8. 8.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)MATHGoogle Scholar
  9. 9.
    Ehrig, H., König, B.: Deriving bisimulation congruences in the dpo approach to graph rewriting. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 151–166. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Ehrig, H., Padberg, J., Prange, U., Habel, A.: Adhesive high-level replacement systems: A new categorical framework for graph transformation. Fundam. Inform. 74(1), 1–29 (2006)MathSciNetMATHGoogle Scholar
  11. 11.
    Emerson, E.A., Sistla, A.P.: Symmetry and model checking. Formal Methods in System Design 9(1/2), 105–131 (1996)CrossRefGoogle Scholar
  12. 12.
    Ferreira, A.P.L., Foss, L., Ribeiro, L.: Formal verification of object-oriented graph grammars specifications. In: Rensink, A., Heckel, R., König, B. (eds.) Graph Transformation for Concurrency and Verification (GT-VC). Electr. Notes Theor. Comput. Sci, vol. 175, pp. 101–114 (2007)Google Scholar
  13. 13.
    Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inform. 26(3/4), 287–313 (1996)MathSciNetMATHGoogle Scholar
  14. 14.
    Habel, A., Pennemann, K.H.: Satisfiability of high-level conditions. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 430–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Hirsch, D., Montanari, U.: Synchronized hyperedge replacement with name mobility. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 121–136. Springer, Heidelberg (2001)Google Scholar
  16. 16.
    Holzmann, G.J.: The model checker SPIN. IEEE Trans. Software Eng. 23(5), 279–295 (1997)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Java PathFinder – A Formal Methods Tool for Java, http://ase.arc.nasa.gov/people/havelund/jpf.html
  18. 18.
    Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented execution semantics using graph transformations. In: Gorrieri, R., Wehrheim, H. (eds.) FMOODS 2006. LNCS, vol. 4037, pp. 186–201. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    König, B., Kozioura, V.: Counterexample-guided abstraction refinement for the analysis of graph transformation systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 197–211. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Lack, S., Sobocinski, P.: Adhesive categories. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)Google Scholar
  21. 21.
    Lambers, L., Ehrig, H., Orejas, F.: Efficient detection of conflicts in graph-based model transformation. Electr. Notes Theor. Comput. Sci. 152, 97–109 (2006)CrossRefGoogle Scholar
  22. 22.
    Levendovszky, T., Prange, U., Ehrig, H.: Termination criteria for dpo transformations with injective matches. Electron. Notes Theor. Comput. Sci. 175(4), 87–100 (2007)CrossRefGoogle Scholar
  23. 23.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical Computer Science 109(1–2), 181–224 (1993)CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    Montanari, U., Pistore, M.: History-dependent automata: An introduction. In: Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    Rensink, A.: Towards model checking graph grammars. In: Gruner, S., Presti, S.L., eds.: Workshop on Automated Verification of Critical Systems (AVoCS), Southampton, UK. Volume DSSE-TR-, -02 of Technical Report., University of Southampton (2003) 150–160 (2003)Google Scholar
  26. 26.
    Rensink, A.: Canonical graph shapes. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 401–415. Springer, Heidelberg (2004)Google Scholar
  27. 27.
    Rensink, A.: The GROOVE simulator: A tool for state space generation. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 479–485. Springer, Heidelberg (2004)Google Scholar
  28. 28.
    Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335. Springer, Heidelberg (2004)Google Scholar
  29. 29.
    Rensink, A.: Model checking quantified computation tree logic. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 110–125. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  30. 30.
    Rensink, A.: Isomorphism checking in GROOVE. In: Zündorf, A., Varró, D. (eds.) Graph-Based Tools (GraBaTs). Electronic Communications of the EASST, European Association of Software Science and Technology, vol. 1, Natal, Brazil (September 2007)Google Scholar
  31. 31.
    Rensink, A., Distefano, D.: Abstract graph transformation. Electr. Notes Theor. Comput. Sci. 157(1), 39–59 (2006)CrossRefGoogle Scholar
  32. 32.
    Robby, D.M.B., Hatcliff, J.: Bogor: A flexible framework for creating software model checkers. In: McMinn, P. (ed.) Testing: Academia and Industry Conference - Practice And Research Techniques (TAIC PART), pp. 3–22. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  33. 33.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. I. World Scientific, Singapore (1997)Google Scholar
  34. 34.
    Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic. ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002)CrossRefGoogle Scholar
  35. 35.
    Varró, D.: Automated formal verification of visual modeling languages by model checking. Software and System Modeling 3(2), 85–113 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Arend Rensink
    • 1
  1. 1.Department of Computer ScienceUniversity of TwenteThe Netherlands

Personalised recommendations