Concurrency, Graphs and Models pp 57-75

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5065) | Cite as

Graph Transformation Units – An Overview

  • Hans-Jörg Kreowski
  • Sabine Kuske
  • Grzegorz Rozenberg

Abstract

In this paper, we give an overview of the framework of graph transformation units which provides syntactic and semantic means for analyzing, modeling, and structuring all kinds of graph processing and graph transformation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph Transformation. Foundations, vol. 1. World Scientific, Singapore (1997)Google Scholar
  2. 2.
    Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Applications, Languages and Tools, vol. 2. World Scientific, Singapore (1999)Google Scholar
  3. 3.
    Ehrig, H., Kreowski, H.J., Montanari, U., Rozenberg, G. (eds.): Handbook of Graph Grammars and Computing by Graph Transformation. Concurrency, Parallelism, and Distribution, vol. 3. World Scientific, Singapore (1999)Google Scholar
  4. 4.
    Andries, M., Engels, G., Habel, A., Hoffmann, B., Kreowski, H.J., Kuske, S., Plump, D., Schürr, A., Taentzer, G.: Graph transformation for specification and programming. Science of Computer Programming 34(1), 1–54 (1999)CrossRefMathSciNetMATHGoogle Scholar
  5. 5.
    Kreowski, H.J., Kuske, S.: Graph transformation units and modules. In: [2], pp. 607–638.Google Scholar
  6. 6.
    Kreowski, H.J., Kuske, S.: Graph transformation units with interleaving semantics. Formal Aspects of Computing 11(6), 690–723 (1999)CrossRefMATHGoogle Scholar
  7. 7.
    Kuske, S.: More about control conditions for transformation units. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 323–337. Springer, Heidelberg (2000)Google Scholar
  8. 8.
    Kuske, S.: Transformation Units—A Structuring Principle for Graph Transformation Systems. PhD thesis, University of Bremen (2000)Google Scholar
  9. 9.
    Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Rule-based transformation of graphs and the product type. In: van Bommel, P. (ed.) Transformation of Knowledge, Information, and Data: Theory and Applications, pp. 29–51. Idea Group Publishing, Hershey, Pennsylvania (2005)Google Scholar
  10. 10.
    Klempien-Hinrichs, R., Kreowski, H.J., Kuske, S.: Typing of graph transformation units. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 112–127. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Plump, D., Steinert, S.: Towards graph programs for graph algorithms. In: Ehrig, H., Engels, G., Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 128–143. Springer, Heidelberg (2004)Google Scholar
  12. 12.
    Mosbah, M., Ossamy, R.: A programming language for local computations in graphs: Computational completeness. In: 5th Mexican International Conference on Computer Science (ENC 2004), pp. 12–19. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  13. 13.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Eetvelde, N.V.: Adaptive star grammars. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 77–91. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Klempien-Hinrichs, R.: Hyperedge substitution in basic atom-replacement languages. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp. 192–206. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  16. 16.
    Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement systems: A new categorical framework for graph transformation. Fundamenta Informaticae 74(1), 1–29 (2006)MathSciNetMATHGoogle Scholar
  17. 17.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G. (eds.): Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (2006)MATHGoogle Scholar
  18. 18.
    Ehrig, H., Engels, G.: Pragmatic and semantic aspects of a module concept for graph transformation systems. In: Cuny, J., Engels, G., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1994. LNCS, vol. 1073, pp. 137–154. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  19. 19.
    Taentzer, G., Schürr, A.: DIEGO, another step towards a module concept for graph transformation systems. In: Corradini, A., Montanari, U. (eds.) SEGRAGRA 1995, Joint COMPUGRAPH/SEMAGRAPH Workshop on Graph Rewriting and Computation. Electronic Notes in Theoretical Computer Science, vol. 2, Elsevier, Amsterdam (1995)Google Scholar
  20. 20.
    Grosse-Rhode, M., Parisi Presicce, F., Simeoni, M.: Refinements and modules for typed graph transformation systems. In: Fiadeiro, J.L. (ed.) WADT 1998. LNCS, vol. 1589, pp. 137–151. Springer, Heidelberg (1999)Google Scholar
  21. 21.
    Große-Rhode, M., Parisi-Presicce, F., Simeoni, M.: Formal software specification with refinements and modules of typed graph transformation systems. Journal of Computer and System Sciences 64(2), 171–218 (2002)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Schürr, A., Winter, A.J.: UML packages for PROgrammed Graph REwriting Systems. In: Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.) TAGT 1998. LNCS, vol. 1764, pp. 396–409. Springer, Heidelberg (2000)Google Scholar
  23. 23.
    Heckel, R., Engels, G., Ehrig, H., Taentzer, G.: Classification and comparison of module concepts for graph transformation systems. In: [2], pp. 639–689.Google Scholar
  24. 24.
    Kreowski, H.J., Kuske, S., Schürr, A.: Nested graph transformation units. International Journal on Software Engineering and Knowledge Engineering 7(4), 479–502 (1997)CrossRefGoogle Scholar
  25. 25.
    Janssens, D., Kreowski, H.J., Rozenberg, G.: Main concepts of networks of transformation units with interlinking semantics. In: Kreowski, H.J., Montanari, U., Orejas, F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems Modeling. LNCS, vol. 3393, pp. 325–342. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Hölscher, K., Kreowski, H.-J., Kuske, S.: Autonomous units and their semantics — the sequential case. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 245–259. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Hölscher, K., Klempien-Hinrichs, R., Knirsch, P., Kreowski, H.J., Kuske, S.: Autonomous units: Basic concepts and semantic foundation. In: Hülsmann, M., Windt, K. (eds.) Understanding Autonomous Cooperation and Control in Logistics. The Impact on Management, Information and Communication and Material Flow, Springer, Berlin, Heidelberg, New York (2007)Google Scholar
  28. 28.
    Kreowski, H.J., Kuske, S.: Autonomous units and their semantics - the parallel case. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409, pp. 56–73. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hans-Jörg Kreowski
    • 1
  • Sabine Kuske
    • 1
  • Grzegorz Rozenberg
    • 2
  1. 1.Department of Computer ScienceUniversity of BremenBremenGermany
  2. 2.Leiden Institute for Advanced Computer Science (LIACS)Leiden UniversityLeidenThe Netherlands

Personalised recommendations