Design and Development of Component-Based Embedded Systems for Automotive Applications

  • Marco Di Natale
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5026)


Automotive software systems are characterized by increasing complexity, tight safety and performance requirements, and need to be developed subject to substantial time-to-market pressure. Model- and component-based design methodologies can be used to improve the overall quality of software systems and foster reuse. In this work, we discuss challenges in the adoption of model-based development flows, and we review recent advances in component-based methodologies, including existing or upcoming standards, such as the MARTE UML profile, ADL languages and AUTOSAR. Finally, the paper provides a quick glance at results on a methodology based on virtual platforms and timing analysis to perform the exploration and selection of architecture solutions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    AUTOSAR. Consortium web page,
  2. 2.
    Balarin, F., et al.: Hardware-Software Co-Design of Embedded Systems – The Polis Approach. Kluwer Academic Publishers, Dordrecht (1997)MATHGoogle Scholar
  3. 3.
    Balarin, F., Lavagno, L., Passerone, C., Watanabe, Y.: Processes, interfaces and platforms. Embedded software modeling in Metropolis. In: Proc. of the 2nd ACM EMSOFT, Grenoble, France (October 2002)Google Scholar
  4. 4.
    Baleani, M., Ferrari, A., Mangeruca, L., Sangiovanni-Vincentelli, A.: Efficient embedded software design with synchronous models. In: Proc. of the 5th ACM EMSOFT. ACM Press, New York (2005)Google Scholar
  5. 5.
    Bini, E., Natale, M.D., Buttazzo, G.: Sensitivity analysis for fixed-priority real-time systems. In: Euromicro ECRTS, Dresden, Germany (June 2006)Google Scholar
  6. 6.
    Bosch, R.: Controller area network specification, version 2.0. Stuttgart (1991)Google Scholar
  7. 7.
    Caspi, P., Benveniste, A.: Toward an approximation theory for computerised control. In: Sangiovanni-Vincentelli, A.L., Sifakis, J. (eds.) EMSOFT 2002. LNCS, vol. 2491, pp. 294–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Davare, A., Zhu, Q., Natale, M.D., Pinello, C., Kanajan, S., Sangiovanni-Vincentelli, A.: Period optimization for hard real-time distributed automotive systems. In: Design Automation Conference, San Diego, CA (June 2007)Google Scholar
  9. 9.
    Davis, R.I., Burns, A., Bril, R.J., Lukkien, J.J.: Controller area network (can) schedulability analysis: refuted, revisited and revised. Real-Time Systems 35, 239–272 (2007)CrossRefGoogle Scholar
  10. 10.
    Harbour, M.G., Klein, M., Lehoczky, J.: Timing analysis for fixed-priority scheduling of hard real-time systems. IEEE Transactions on Software Engineering 20(1) (January 1994)Google Scholar
  11. 11.
    Lehoczky, J.P., Sha, L., Ding, Y.: The rate-monotonic scheduling algorithm: Exact characterization and average case behavior. In: Proc. of the 10th RTSS, Santa Monica, CA (December 1989)Google Scholar
  12. 12.
    Mathworks. The Mathworks Simulink and StateFlow User’s Manuals,
  13. 13.
    OSEK. OSEK/VDX Steering Committee: Time-Triggered Operating System,
  14. 14.
    OSEK. OS vers. 2.2.3 specification (2006),
  15. 15.
    DSpace TargetLink product page,
  16. 16.
    Racu, R., Ernst, R.: Scheduling anomaly detection and optimization for distributed systems with preemptive task-sets. In: 12th RTAS, San Jose (April 2006)Google Scholar
  17. 17.
    Sha, L., Rajkumar, R., Lehoczky, J.P.: Priority inheritance protocols: An approach to real-time synchronization. IEEE Transactions on computers 39(9), 1175–1185 (1990)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Wang, Y., Saksena, M.: Scheduling fixed priority tasks with preemption threshold. In: Proc. of the RTCSA Conference (December 1999)Google Scholar
  19. 19.
    Zheng, W., Natale, M.D., Pinello, C., Giusto, P., Sangiovanni-Vincentelli, A.: Synthesis of task and message activation models in real-time distributed automotive systems. In: Proc. of the DATE conference, Nice, April 15-18 (2007)Google Scholar
  20. 20.
    Object Management Group MARTE profile: Modeling and Analysis of Real-time and Embedded systems,
  21. 21.
    Object Management Group UML Profile for Modeling QoS and Fault Tolerance Characteristics and Mechanisms,
  22. 22.
    ATESST Advanced Traffic Efficiency and Safety through Software Technology Deliverable 3.2 Report on behavior modeling with the EAST-ADL 2.0 (July 12, 2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Marco Di Natale
    • 1
  1. 1.Scuola Superiore S. AnnaPisaItaly

Personalised recommendations