Dual-Energy X-Ray Absorptiometry

  • Judith E. Adams
Part of the Medical Radiology book series (MEDRAD)


Osteoporosis is the most common metabolic bone disease. It is characterised by reduced bone mass, altered bone architecture and the clinical consequence of fracture with little or no trauma (low-trauma fractures, insufficiency fractures). These fractures tend to occur most commonly in sites of the skeleton that are rich in trabecular bone: the wrist, spine and hip. It is the last of these which has the greatest morbidity and mortality, but all osteoporotic fractures result in pain and suffering for patients and have considerable socio-economic impact on health care systems and society generally (Cooper 1996). 1 in 2 women and 1 in 5 men over the age of 50 years will suffer a fracture in their lifetime in the Western world (van Staa et al. 2001). In the past 20 years there have been significant advances in knowledge of the epidemiology, patho-physiology, and treatment of osteoporosis (Sambrook and Cooper 2006). These therapies increase bone mineral density (BMD) by between 5–12% and, more importantly, reduce future fracture risk to a greater magnitude (decrements between 30–70%) (Royal College of Physicians 1999, 2000; Meunier 2001; Compston 2005; Poole and Compston 2006; Keen 2007).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams JE (1998) Single-and dual-energy X-ray absorptiometry. In: Genant HK, Guglielmi G, Jergas M (eds) Bone densitometry and osteoporosis. Springer, Berlin Heidelberg New York, p 305–334Google Scholar
  2. Adams JE (2008) Metabolic and endocrine skeletal disease. In: Grainger & Allison’s Diagnostic Radiology, 5th Edition. Vol 2, Sect 5 Musculoskeletal Chap 49. Churchill Livingstone Elsevier, Philadelphia, p 1083–1113Google Scholar
  3. Ahmed AIH, Blake GM, Rymer JM, Fogelman I (1997) Screening for osteoporosis and osteopenia: do the accepted normal ranges lead to overdiagnosis? Osteoporos Int 7:432–438PubMedCrossRefGoogle Scholar
  4. Bachrach LK (2005) Assessing bone health in children: who to test and what does it mean? Pediatr Endocrinol Rev 2(S3):332–336PubMedGoogle Scholar
  5. Beck TJ (2007) Extending DXA beyond bone mineral density: understanding hip structure analysis. Curr Osteoporos Rep 5:49–55PubMedGoogle Scholar
  6. Blake GM, Fogelman I (1997) Technical principles of dual energy X-ray absorptiometry. Semin Nucl Med 27:210–228PubMedCrossRefGoogle Scholar
  7. Blake GM, Fogelman I (2007a) The role of DXA bone density scans in the diagnosis and treatment of osteoporosis. Postgrad Med J 83:509–517PubMedCrossRefGoogle Scholar
  8. Blake GM, Fogelman I (2007b) The correction of BMD measurements for bone strontium content. J Clin Densitom 10:259–265PubMedCrossRefGoogle Scholar
  9. Blake GM, Wahner HW, Fogelman I (1999) The evaluation of osteoporosis: dual energy X-ray absorptiometry and ultrasound in clinical practice. Martin Dunitz, LondonGoogle Scholar
  10. Blake GM, Chinn DJ, Steel SA, Patel R, Panayiotou E, Thorpe J, Fordham JN, National Osteoporosis Society Bone Denstiometry Forum (2005) A list of device-specific thresholds for the clinical interpretation of peripheral X-ray absorptiometry examinations. Osteoporos Int 16:2149–2156PubMedCrossRefGoogle Scholar
  11. Blake GM, Knapp KM, Spector TD, Fogelman I (2006a) Predicting the risk of fracture at any skeletal site: are all bone mineral density measurement sites equally effective? Calcif Tiss Int 78:9–17CrossRefGoogle Scholar
  12. Blake GM, Naeem M, Boutros M (2006b) Comparison of effective dose to children and adults from dual energy X-ray absorptiometry examinations. Bone 38:935–942PubMedCrossRefGoogle Scholar
  13. Borgstrom F, Johnell O, Kanis JA, Jonsonn B, Rehnberg C (2006) At what hip fracture risk is it cost-effective to treat? International intervention thresholds for the treatment of osteoporosis. Osteoporos Int 17:1459–1471PubMedCrossRefGoogle Scholar
  14. Bouxsein ML, Parker RA, Greenspan SL (1999) Forearm bone mineral densitometry cannot be used to monitor response to alendronate. Osteoporos Int 10:505–509PubMedCrossRefGoogle Scholar
  15. Brennan BM, Mughal Z, Roberts SA, Ward K, Shalet SM, Eden TO, Will AM, Stevens RF, Adams JE (2005) Bone mineral density in childhood survivors of acute lymphoblastic leukaemia treated without cranial irradiation. J Clin Endocrinol Metab 90:689–694PubMedCrossRefGoogle Scholar
  16. Cameron JR, Sorenson J (1963) Measurement of bone mineral density in vivo: an improved method. Science 142:230–232PubMedCrossRefGoogle Scholar
  17. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145PubMedGoogle Scholar
  18. Cheng S, Suominen H, Sakari-Rantala R, Laukkanen P, Avikainen V, Heikkinen E (1997) Calcaneal bone mineral density predicts fracture occurrence: a five-year follow-up study in elderly people. J Bone Miner Res 12:1075–1082PubMedCrossRefGoogle Scholar
  19. Compston J (2005) Guidelines for the management of osteoporosis: the present and the future. Osteoporos Int 16:1173–1176PubMedCrossRefGoogle Scholar
  20. Compston JE, Cooper C, Kanis JA (1995) Bone densitometry in clinical practice. Br Med J 310:1507–1510Google Scholar
  21. Cooper C (1996) Epidemiology and definition of osteoporosis. In: Compston JE (ed) Osteoporosis: new perspectives on causes, prevention and treatment. Royal College of Physicians of London p 1–10Google Scholar
  22. Crabtree NJ, Kibirige MS, Fordham J, Banks LM, Muntoni F, Chinn D, Boivin CM, Shaw NJ (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972PubMedCrossRefGoogle Scholar
  23. Cullum ID, Ell PJ, Ryder JP (1989) X-ray dual photon absorptiometry: a new method for the measurement of bone density. Brit J Radiol 62:587–592PubMedGoogle Scholar
  24. de Laet CE, Van Hout BA, Burger H, Weel AE, Hofman A, Pols HA (1998) Hip fracture prediction in elderly men and women: validation in the Rotterdam study. J Bone Miner Res 13:1587–1593PubMedCrossRefGoogle Scholar
  25. Del Rio L, Pons F, Huguet M, Setoain FJ (1995) Anteroposterior versus lateral bone mineral density of spine assessed by dual X-ray absorptiometry. Eur J Radiol 22:407–412Google Scholar
  26. Drage NA, Palmer RM, Blake GM, Wilson R, Crane F, Fogelman I (2007) A comparison of bone mineral density in the spine, hip and jaw of edentulous subjects. Clin Oral Implants Res 18:496–500PubMedCrossRefGoogle Scholar
  27. Dunn WL, Wahner HW, Riggs BL (1980) Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology 136:485–487PubMedGoogle Scholar
  28. Eastell R, Wahner HW, O’Fallon WM, Amadio PC, Melton LJ 3rd, Riggs BL (1989). Unequal decrease in bone density of the lumbar spine and ultradistal radius in Colles’ and vertebral fracture syndromes. J Clin Invest 83:168–174PubMedCrossRefGoogle Scholar
  29. Engelke K, Gluer CC (2006) Quality and performance measures in bone densitometry: part 1: errors and diagnosis. Osteoporos Int 17:1283–1292PubMedCrossRefGoogle Scholar
  30. Engelke K, Gluer CC (2006) Quality and performance measures in bone densitometry: part 2: fracture risk. Osteoporos Int 17:1449–1458PubMedCrossRefGoogle Scholar
  31. Eiken P, Kolthoff N, Barenholdt O, Hermansen F, Pors Nielsen S (1994) Switching from pencil-beam to fanbeam. II. Studies in vivo. Bone 15:671–676PubMedCrossRefGoogle Scholar
  32. European Communities/ European Foundation for Osteoporosis (1998) Building strong bones and preventing fractures. Summary report on osteoporosis in the European Community — action for prevention. European Communities/European Foundation for Osteoporosis, Germany, p 3–12Google Scholar
  33. Faulkner KG, McClung MR (1995) Quality control of DXA instruments in multicenter trials. Osteoporos Int 5:218–227PubMedCrossRefGoogle Scholar
  34. Faulkner KG, Gluer CC, Majumdar S, Lang P, Engelke K, Genant HK (1991) Non-invasive measurements of bone mass, structure and strength: current methods and experimental techniques. Am J Radiol 157:1229–1237Google Scholar
  35. Faulkner RA, Bailey DA, Drinkwater DT, Wilkinson AA, Houston CS, McKay HA (1993) Regional and total body bone mineral content, bone mineral density, and total body tissue composition in children 8–16 years of age. Calcif Tissue Int 53:7–12PubMedCrossRefGoogle Scholar
  36. Faulkner KG, McClung M, Cummings SR (1994) Automated evaluation of hip axis length for predicting hip fracture. J Bone Miner Res 9:1065–1070PubMedGoogle Scholar
  37. Faulkner KG, von Stetten E, Miller P (1999) Discordance in patient classification using T-score. J Clin Densitom 2:343–350PubMedCrossRefGoogle Scholar
  38. Ferrar L, Jiang G, Eastell R, Peel NF (2003) Visual identification of vertebral fractures in osteoporosis using morphometric X-ray absorptiometry. J Bone Miner Res 18:933–938PubMedCrossRefGoogle Scholar
  39. Ferrar L, Jiang G, Adams J, Eastell R (2005) Identification of vertebral fractures: an update. Osteoporos Int 16:717–728PubMedCrossRefGoogle Scholar
  40. Fewtrell MS; British Paediatric and Adolescent Bone Group (2003) Bone densitometry in children assessed by dual X-ray absorptiometry: uses and pitfalls. Arch Dis Child 88:795–798PubMedCrossRefGoogle Scholar
  41. Fogelman I, Blake GM (2005) Bone densitometry: an update. Lancet 366(9503):2068–2070PubMedCrossRefGoogle Scholar
  42. Franck H, Munz M, Scherrer M (1995) Evaluation of dualenergy X-ray absorptiometry bone mineral measurement — comparison of a single-beam and fan beam design: the effect of osteophytic calcification on spine bone mineral density. Calcif Tissue Int 56:192–195PubMedCrossRefGoogle Scholar
  43. Frohn J, Wilken T, Falk S, Strutte HJ, Kollath J, Hor G (1991) Effect of aortic sclerosis on bone mineral measurements by dual-photon absorptimetry. J Nucl Med 32:259–262PubMedGoogle Scholar
  44. Genant HK, Grampp S, Glueer CC, Faulkner KG, Jergas M, Engelke K, Hagiwara S, van Kuijk C (1994) Universal standardisation for the dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 9:1503–1514PubMedGoogle Scholar
  45. Genant HK, Engelke K, Fuerst T, Gluer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730PubMedGoogle Scholar
  46. Genant HK, Li Y, Wu CY, Shepherd JA (2000) Vertebral fractures in osteoporosis: a new method for clinical assessment. J Clin Densitom 3:281–290PubMedCrossRefGoogle Scholar
  47. Gilsanz V (1998) Bone density in children: a review of the available techniques and indications. Eur J Radiol 26:177–182PubMedCrossRefGoogle Scholar
  48. Gluer CC (1999) Monitoring skeletal changes by radiological techniques. J Bone Miner Res 14:1952–1962PubMedCrossRefGoogle Scholar
  49. Gluer CC, Blake G, Blunt BA, Jergas M, Genant HK (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5:262–270PubMedCrossRefGoogle Scholar
  50. Goh JC, Low SL, Bose K (1995) Effect of femoral rotation on bone mineral density measurements with dual energy Xray absorptiometry. Calcif Tissue Int 57:340–343PubMedCrossRefGoogle Scholar
  51. Grampp S, Jergas M, Gluer CC, Lang P, Brastow P, Genant HK (1993) Radiologic diagnosis of osteoporosis: current methods and perspectives. Radiol Clin North Am 31(5):1131–1145Google Scholar
  52. Grampp S, Genant HK, Mathur A, Lang P, Jergas M, Takada M, Gluer CC, Lu Y, Chavez M (1997) Comparisons of non-invasive bone mineral measurements in assessing age-related loss, fracture discrimination and diagnostic classification. J Bone Miner Res 12:697–711PubMedCrossRefGoogle Scholar
  53. Gregory JS, Testi D, Stewart A, Undrill PE, Reid DM, Aspden RM (2004) A method of assessment of the shape of the proximal femur and its relationship to osteoporotic hip fracture. Osteoporos Int 15:5–11PubMedCrossRefGoogle Scholar
  54. Gregory JS, Stewart A, Undrill PE, Reid DM, Aspden RM (2005) Bone shape, structure and density as determinants of osteoporotic hip fracture: a pilot study investigating the combination of risk fracture. Invest Radiol 40:591–597PubMedCrossRefGoogle Scholar
  55. Griffin MC, Kimble R, Hopfer W, Pacifici R (1993) Dualenergy X-ray absorptiometry of the rat: accuracy, precision and measurement of bone loss. J Bone Miner Res 8:795–800PubMedGoogle Scholar
  56. Griffiths MR, Noakes KA, Pocock NA (1997) Correcting the magnification error of fan beam densitometers. J Bone Miner Res 12:119–123PubMedCrossRefGoogle Scholar
  57. Guglielmi G, Grimston SK, Fischer KC, Pacifici R (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual X-ray absorptiometry compared with quantitative CT. Radiology 192:845–850PubMedGoogle Scholar
  58. Harrison EJ, Adams JE (2006) Application of a triage approach to peripheral bone densitometry reduces requirement for central DXA, but is not cost effective. Calc Tiss Int 79:199–206CrossRefGoogle Scholar
  59. Haugeberg G, Emery P (2005) Value of dual-energy X-ray absorptiometry as a diagnostic tool in early rheumatoid arthritis. Rheum Dis Clin North Am 31:715–728PubMedCrossRefGoogle Scholar
  60. Holmes SJ, Economou G, Whitehouse RW, Adams JE, Shalet SM (1994) Reduced bone mineral density in patients with adult onset growth hormone deficiency. J Clin Endocrinol Metab 78:669–674PubMedCrossRefGoogle Scholar
  61. Hogler W, Briody J, Woodhead HJ, Chan A, Cowell CT (2003) Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J Pediatr 143:81–88PubMedCrossRefGoogle Scholar
  62. Horner K, Devlin H, Alsop CW, Hodgkinson IM, Adams JE (1996) Mandibular bone mineral density as a predictor of skeletal osteoporosis. Br J Radiol 69:1019–1025PubMedGoogle Scholar
  63. Huda W, Morin RL (1996) Patient doses in bone densitometry Br J Radiol 69:422–425PubMedGoogle Scholar
  64. Hui SL, Gao S, Zhou XH, Johston CC Jr, Lu Y, Gluer CC, Grampp S, Genant HK (1997) Universal standardization of bone density measurements: a method with optimal properties for calibration among several instruments. J Bone Miner Res 12:1463–1470PubMedCrossRefGoogle Scholar
  65. International Society for Clinical Densitometry (2005) 342 North Main Street, West Hartford CT06117-2507 USA; www.ISCD.orgGoogle Scholar
  66. Jaovisidha S, Sartoris DJ, Martin EM, De Maeseneer M, Szollar SM, Deftos LJ (1997) Influence of spondylopathy on bone densitometry using dual energy X-ray absorptiometry. Calcif Tissue Int 60:424–429PubMedCrossRefGoogle Scholar
  67. Jergas M, Breitenseher M, Gluer CC, Black D, Lang P Grampp s, Engelke K, Genant HK (1995) Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine. Osteoporos Int 5:196–204PubMedCrossRefGoogle Scholar
  68. Kalender WA (1992) Effective dose values in bone mineral measurements by photon absorptiometry and computed tomography. Osteoporos Int 2:82–87PubMedCrossRefGoogle Scholar
  69. Kalender WA, Felsenberg D, Genant HK, Dequeker J, Reeve J (1995) The European Spine Phantom: a tool for standardization and quality control in spinal bone mineral measurement by DXA and QCT. Eur J Radiol 20:83–92PubMedCrossRefGoogle Scholar
  70. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321):1929–1936PubMedCrossRefGoogle Scholar
  71. Kanis JA, Delmas P, Burckhardt P, Cooper C, Torgerson D (1997) Guidelines for diagnosis and management of osteoporosis: EFFO report. Osteoporos Int 7:390–406PubMedCrossRefGoogle Scholar
  72. Kanis JA, Gluer C, for the Committee of the Scientific Advisors, International Osteoporosis Foundation (2000) An update in the diagnosis and assessment of osteoporosis with densitometry. Osteoporos Int 11:192–202PubMedCrossRefGoogle Scholar
  73. Kanis JA, Johnell O, Oden A, Johansson H, Eisman JA, Fujiwara S, Kroger H, Honkanen R, Melton LJ Jr, O’Neill T, Reeve J, Silman A, Tenenhouse A (2006) The use of multiple sites for the diagnosis of osteoporosis. Osteoporos Int 17:527–534PubMedCrossRefGoogle Scholar
  74. Kastl S, Sommer T, Klein P, Hohenberger W, Engelke K (2002) Accuracy and precision oof bone mineral density and bone mineral content in the excised rat humeri using fan beam dual-energy X-ray absorptiometry. Bone 30:243–246PubMedCrossRefGoogle Scholar
  75. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339PubMedGoogle Scholar
  76. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM (1988) Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 67:839–844PubMedCrossRefGoogle Scholar
  77. Keen R (2007) Osteoporosis: strategies for prevention and management. Best Pract Res Clin Rheumatol 21:109–122PubMedCrossRefGoogle Scholar
  78. Kim J, Shen W, Gallagher D, Jones A Jr, Wang Z, Wang J, Heshka S, Heymsfield SB (2006) Total-body skeletal muscle mass: estimation by dual-energy X-ray absorptiometry in children and adolescents Am J Nutr 84:1014–1020Google Scholar
  79. Koo WW, Hockman EM, Hammami M (2004) Dual energy X-ray absorptiometry measurements in small subjects: conditions affecting clinical measurements. J Am Coll Nutr 23:212–219PubMedGoogle Scholar
  80. Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85PubMedCrossRefGoogle Scholar
  81. Kroger H, Huopio J, Honkanen R, Tuppurainen M, Puntila E, Alhava E, Saarikoski S (1995) Prediction of fracture risk using axial bone mineral density in a perimenopausal population: a prospective study. J Bone Miner Res 10:302–306PubMedGoogle Scholar
  82. Laskey MA, Crisp AJ, Compston JE, Khaw KT (1993) Heterogeneity of spine bone density. Br J Radiol 66:480–483PubMedGoogle Scholar
  83. Lewis MK, Blake GM (1995) Patient dose in morphometric X-ray absorptiometry Osteoporos Int 5:281–282PubMedCrossRefGoogle Scholar
  84. Lewis MK, Blake GM, Fogelman I (1994) Patient doses in dual X-ray absorptiometry. Osteoporos Int 4:11–15PubMedCrossRefGoogle Scholar
  85. Link TM, Guglielmi G, van Kuijk C, Adams JE (2005) Radiologic assessment of osteoporotic fracture: diagnostic and prognostic implications. Eur Radiol 15:1521–1532PubMedCrossRefGoogle Scholar
  86. Lu PW, Cowell CT, Lloyd-Jones SA, Briody J, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5–27 years. J Clin Endocrinol Metab; 81:1586–1590PubMedCrossRefGoogle Scholar
  87. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC Jr, Lindsay R (1998) Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 8:468–489PubMedCrossRefGoogle Scholar
  88. Lu PW, Cowell CT, Lloyd-Jones SA, Briody JN, Howman-Giles R (1996) Volumetric bone mineral density in normal subjects, aged 5-27 years. J Clin Endocrinol Metab 81:1586–1590PubMedCrossRefGoogle Scholar
  89. Marshall D, Johnell O, Wedel H (1996) Meta-analysis of how well measures of bone density predict occurrence of osteoporotic fractures. Br Med J 312:1254–1259Google Scholar
  90. Melton LJ, Eddy DM, Johnson CC (1990) Screening for osteoporosis. Ann Intern Med 112:516–528PubMedGoogle Scholar
  91. Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Wahner HW, Riggs BL (1993) Long-term fracture prediction by bone mineral assessed at different skeletal sites. J Bone Miner Res 8:1227–1233PubMedGoogle Scholar
  92. Meunier PJ (2001) Anabolic agents for treatment of postmenopausal osteoporosis. J Bone Spine 68:576–581CrossRefGoogle Scholar
  93. Miller P (2000) Controversies in bone mineral density diagnostic classification. Calcif Tissue Int 66:317–319PubMedCrossRefGoogle Scholar
  94. Miller P, Bonnick SL Rosen CJ (1996) Consensus of an international panel on the clinical utility of bone mass measurements in the detection of low bone mass in the adult population. Calcif Tissue Int 58:207–214PubMedGoogle Scholar
  95. Mølgaard C, Thomsen BL, Prentice A, Cole TJ, Michaelsen KF (1997) Whole body bone mineral content in healthy children and adolescents. Arch Dis Child 76:9–15PubMedCrossRefGoogle Scholar
  96. National Osteoporosis Society (2001) Position statement on the use of peripheral X-ray absorptiometry in the management of osteoporosis. National Osteoporosis Society, Camerton, Bath, UK, p 1–15Google Scholar
  97. National Osteoporosis Society (2004) A practical guide to bone densitometry in children. National Osteoporosis Society, Camerton, bath, BA2 0PJ, UKGoogle Scholar
  98. Njeh CF, Apple K, Temperton DH, Boivin CM (1996) Radiological assessment of a new bone densitometer: the Lunar expert. Br J Radiol 69:335–340PubMedGoogle Scholar
  99. Nord RH (1992) Work in progress: a cross-calibration study of four DXA instruments designed to culminate in inter-manufacturer standardization. Osteoporos Int 2:210–211PubMedCrossRefGoogle Scholar
  100. Orwoll ES, Oviatt SK, Mann T (1990) The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 70:1202–1207PubMedGoogle Scholar
  101. Pacheco EM, Harrison EJ, Ward KA, Lunt M, Adams JE (2002) Detection of osteoporosis by dual energy X-ray absorptiometry (DXA) of the calcaneus: is the WHO criterion applicable? Calcif Tissue Int 70:475–482PubMedCrossRefGoogle Scholar
  102. Parfitt AM (1990) Interpretation of bone densitometry measurements: disadvantages of a percentage scale and a discussion of some alternatives. J Bone Miner Res 5:537–540PubMedGoogle Scholar
  103. Patel R, Blake GM, Herd RJM, Fogelman I (1997) The effect of weight change on DXA scans in a 2 year prospective clinical trial of cyclical etidronate therapy. Calcif Tissue Int 61:393–399PubMedCrossRefGoogle Scholar
  104. Patel R, Blake GM, Fogelman I (2004) An evaluation of the United Kingdom Osteoporosis Society position statement on the use of peripheral dual-energy X-ray absorptiometry. Osteoporos Int 15:497–504PubMedCrossRefGoogle Scholar
  105. Peel N, Eastell R (1993) Measurement of bone mass and turnover. Baillieres Clin Rheumatol 7:479–498PubMedCrossRefGoogle Scholar
  106. Peel N, Johnson A, Barrington NA, Smith TW, Eastell R (1993) Impact of anomalous vertebral segmentation on the measurements of bone mineral density. J Bone Miner Res 8:719–723PubMedCrossRefGoogle Scholar
  107. Poole KE, Compston JE (2006) Osteoporosis and its management. BMJ 333(7581):1251–1256PubMedCrossRefGoogle Scholar
  108. Pietrobelli A, Formica C, Wang Z, Heymsfield SB (1996) Dual-energy X-ray absorptiometry body composition model: review of physical concepts. Am J Physiol 271(6 Pt 1) E941–951PubMedGoogle Scholar
  109. Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to sizerelated artifacts in the identification of bone mineral determinants. Am J Clin Nutr; 60:837–842PubMedGoogle Scholar
  110. Prince RL (2007) Calcium and vitamin D — for whom and when. Menopause Int 13:35–37PubMedCrossRefGoogle Scholar
  111. Quek ST, Peh WC (2002) Radiology of osteoporosis. Semin Musculoskelet Radiol 6:197–206PubMedCrossRefGoogle Scholar
  112. Rea JA, Steiger P, Blake GM, Fogelman I (1998) Optimizing data acquisition and analysis of morphometric X-ray absorptiometry. Osteoporos Int 8:177–183PubMedCrossRefGoogle Scholar
  113. Rea JA, Li J, Blake GM, Steiger P, Genant HK, Fogelman I (2000) Visual assessment of vertebral deformity by X-ray absorptiometry: a highly predictive method to exclude vertebral deformity. Osteoporos Int 11:660–668PubMedCrossRefGoogle Scholar
  114. Rea JA, Chen MB, Li J, Marsh E, Fan B, Blake GM, Steiger P, Smith IG, Genant HK, Fogelman I (2001) Vertebral morphometry: a comparison of long-term precision of morphometric X-ray absorptiometry and morphometric radiography in normal and osteoporotic subjects. Osteoporos Int 12:158–166PubMedCrossRefGoogle Scholar
  115. Roberts MG, Cootes TF, Pacheco EM, Adams JE (2007) Quantitative fracture detection on Dual Energy X-ray Absorptiometry (DXA) images using shape and appearance models. Acad Radiol 14:1166–1178PubMedCrossRefGoogle Scholar
  116. Royal College of Physicians (1999) Osteoporosis: guidelines for prevention and treatment. Royal College of Physicians, London, UK, p 63–70Google Scholar
  117. Royal College of Physicians (2000) Osteoporosis: clinical guidelines for prevention and treatment. Update on pharmacological interventions and an algorithm for management. Royal College of Physicians, London, UK, pp 1–16Google Scholar
  118. Salle BL, Braillon P, Glorieux FH, Brunet J, Cavero E, Meunier PJ (1992) Lumbar bone mineral content measured by dual energy X-ray absorptiometry in newborns and infants. Acta Paediatr 81:953–958PubMedCrossRefGoogle Scholar
  119. Sambrook P, Cooper C (2006) Osteoporosis. Lancet 367(9527):2010–2018PubMedCrossRefGoogle Scholar
  120. Sawyer AJ, Bachrach LK, Fung EB (Eds) (2006) Bone densitometry in growing patients; guidelines for clinical practice. Humana Press http://www.humanapress.comGoogle Scholar
  121. Sanchez MM, Gilsanz V (2005) Pediatric DXA measurements Pediatr Endocrinol Rev 2Suppl 3:337–341PubMedGoogle Scholar
  122. Schott AM, Cormier C, Hans D, Favier F, Hausherr E, Dargent-Molina P, Delmas PD, Ribot C, Sebert JL, Breart G, Meunier PJ (1998) How hip and whole-body bone mineral density predict hip fracture in elderly women: the EPIDOS Prospective Study. Osteoporos Int 8:247–254PubMedCrossRefGoogle Scholar
  123. Sievanen H, Oja P, Vuori I (1992) Precision of dual energy x-ray absorptiometry in determining bone mineral density and content of various skeletal sites. J Nucl Med 33:1137–1142PubMedGoogle Scholar
  124. Smyth PP, Taylor CJ, Adams JE (1999) Vertebral shape: automatic measurement with active shape models. Radiology 211:571–578PubMedGoogle Scholar
  125. Soininvaara T, Kroger H, Jurvelin JS, Miettinen H, Suomalainen O, Alhava E (2000) Measurement of bone density around total knee arthroplasty using fan-beam dual energy X-ray absorptiometry. Calcif Tissue Int 67:267–272PubMedCrossRefGoogle Scholar
  126. Tothill P, Hannan WJ (2000) Comparison between Hologic QDR 1000 W, QDR 4500A, and Lunar Expert dual-energy X-ray absorptiometry scanners for measuring total bone and soft tissues. Ann N Y Acad Sci 904:63–71PubMedCrossRefGoogle Scholar
  127. van Rijn RR, van der Sluis IM, Link TM, Grampp S, Guglielmi G, Imhof H, Glüer C, Adams JE, van Kuijk C (2003) Bone densitometry in children: a critical appraisal. Eur Radiol 13:700–710PubMedGoogle Scholar
  128. van Staa TP, Dennison EM, Leufkens HG, Cooper C (2001) Epidemiology of fractures in England and Wales. Bone 29:517–522PubMedCrossRefGoogle Scholar
  129. Vokes T, Bachman D, Baim S, Binkley N, Broy S, Ferrar L, Lewiecki EM, Richmand B, Schousboe J; International Society of Clinical Densitometry (2006) Vertebral fracture assessment: the 2005 ISCD Official Positions. J Clin Densitom 9:37–46PubMedCrossRefGoogle Scholar
  130. Ward KA, Mughal Z, Adams JE (2006) Tools for measuring bone in children and adolescents. In: Bone densitometry in growing patients; guidelines for clinical practice. Editors: Sawyer AJ, Bachrach LK, Fung EB Humana Press http://www.humanapress.com pp 15–40Google Scholar
  131. Ward KA, Ashby RL, Roberts SA, Adams JE, Mughal MZ (2007) UK reference data for the Hologic QDR Discovery dual energy X-ray absorptiometry scanner in healthy children aged 6-17 years. Arch Dis Child 92:53–59PubMedCrossRefGoogle Scholar
  132. Warner JT, Cowan FJ, Dunstan FD, Evand WD, Webb DK, Gregory JW (1998) Measured and predicted bone mineral content in healthy boys and girls aged 6–18 years: adjustment for body size and puberty. Acta Paediatr 87:244–249PubMedCrossRefGoogle Scholar
  133. Wilkinson JM, Peel NF, Elson RA, Stockley I, Eastell R (2001) Measuring bone mineral density of the pelvis and proximal femur after total hip arthroplasty. J Bone Joint Surg Br 83:283–288PubMedCrossRefGoogle Scholar
  134. Wilson CR, Fogelman I, Blake GM, Rodin A (1991) The effect of positioning on dual-energy X-ray absorptiometry of the proximal femur. Bone Miner 13:69–76PubMedCrossRefGoogle Scholar
  135. Wishart J, Horowitz M, Need A, Nordin BE (1990) Relationship between forearm and vertebral mineral density in postmenopausal women with primary hyperparathyroidism. Arch Intern Med 150:1329–1331PubMedCrossRefGoogle Scholar
  136. World Health Organisation Study Group (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organisation, Geneva, Switzerland (WHO Technical Report Series 843)Google Scholar
  137. Young JT, Carter K, Marion MS, Greendale GA (2000) A simple method of computing hip axis length using fan-beam densitometry and anthropomorphic measurements. J Clin Densitom 3:325–331PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Judith E. Adams
    • 1
  1. 1.Department of Clinical Radiology, Imaging Science and Biomedical Engineering, Stopford Medical SchoolUniversity of ManchesterManchesterUK

Personalised recommendations