An Interoperable Web Service Architecture to Provide Base Maps Empowered by Automated Generalisation

  • Theodor Foerster
  • Jantien Stoter
  • Rob Lemmens
Part of the Lecture Notes in Geoinformation and Cartography book series (LNGC)


Producing customized base maps generated by automated generalisation on the web is an important issue in physical planning. In this web context an interoperable architecture is a key requirement. It integrates the necessary data and the functionality to finally perform the generation of the base map. Additionally, interoperability increases the reuse of the architecture for other domains. In this paper we will describe such an architecture. It has two key features: it supports the user profiles to specify the generalisation constraints and the generalisation-enabled WMS, which generates the base map according to the user profiles. The specialized WMS is especially able to access Web Service-based generalisation functionality. For the implementation of the architecture we used Geoserver, 1Spatial’s Clarity and 52° North WPS.


Automated generalisation Web Service architecture user profiles physical planning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beard, K. M. (1991): Constraints on rule formation. In: Buttenfield, B. & Mcmaster, R. (eds.),Map Generalization: Making Rules for Knowledge Representation, Longman, 121-135.Google Scholar
  2. Burghardt, D.; Edwardes, A. & Mannes, J. (2004): An architecture for automatic generalisation of mobile maps. Gartner, G. (ed.), 2nd Symposium on Location based service and telecartography. Google Scholar
  3. Burghardt, D.; Neun, M. & Weibel, R. (2005): Generalization Services on the Web – A Classification and an Initial Prototype Implementation. Auto-Carto 2005.Google Scholar
  4. Burghardt, D.; Schmid, S. & Stoter, J. E. (2007): Investigations on cartographic constraint formalisation. 10th ICA workshop on Generalisation and Multiple Representation. Google Scholar
  5. Edwardes, A.; Burghardt, D. & Neun, M. (2005): Interoperability in Map Generalization Research. International Symposium on Generalisation of Information 2005.Google Scholar
  6. Foerster, T. & Stoter, J. (2006): Establishing an OGC Web Processing Service for generalization processes. 9th ICA workshop on Generalisation and Multiple Representation. Google Scholar
  7. Foerster, T.; Stoter, J. & Lemmens, R. (2007): Towards automatic web-based generalization processing: a case study. 10th ICA workshop on Generalisation and Multiple Representation. Google Scholar
  8. Foerster, T.; Stoter, J. & Köbben, B. (2007a): Towards a formal classification of Generalization operators.ICC 2007. Google Scholar
  9. Gruenreich, D. (1992): ATKIS - a topographic information system as a basis for GIS and digital cartography in Germany. From digital map series to geo-information systems, Geologisches Jahrbuch Reihe A, 207 – 216. Google Scholar
  10. Hardy, P.; Hayles, M. & Revell, P (2003): Clarity - a new environment for generalisation using agents, Java, XML and topology. Fifth Workshop on Progress in Automated Map Generalization. Google Scholar
  11. Harrower, M. & Bloch, M. (2006): A Map Generalization Web Service. IEEE Computer Graphics and Applications, 22-27.Google Scholar
  12. ISO/TC 211 (2005): Geographic information – Services. International Organization for Standardization. Google Scholar
  13. Lamy, S.; Ruas, A.; Demazeu, Y.; Jackson, M.; Mackaness, W. & Weibel, R. (1999): The Application of Agents in Automated Map Generalization. 19th International Cartographic Conference. Google Scholar
  14. Lecordix, F.; Regnauld, N.; Meyer, M. & Fechir, A. (2005): Magnet Consortium. 8th ICA Workshop on Generalization and Multiple Representation. Google Scholar
  15. Lecordix, F.; Gallic, J. L.; Gondol, L. & Braun, A. (2007): Development of a new generalization flowline for topographic maps. 10th ICA workshop on Generalisation and Multiple Representation. Google Scholar
  16. Lemmens, R. L. G. (2006): Semantic interoperability of distributed geo-services. PhD Thesis, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands.Google Scholar
  17. Mackaness, W. A.; Ruas, A. & Sarjakoski, L. (ed.) (2007): Generalisation of geographic information: cartographic modelling and applications. Elsevier.Google Scholar
  18. McLaughlin, J. & Groot, R. (2000): Geospatial data infrastructure: concepts, cases and good practice. Oxford University Press. Google Scholar
  19. McMaster, R. B. & Shea, K. S. (1992): Generalization in Digital Cartography. American Association of Geographers. Google Scholar
  20. Ministry of Housing, Spatial Planning and the Environment (2008): Government launches website for spatial plans. Article url: http://international., visited January 2008.Google Scholar
  21. Monnot, J.; Lee, D. & Hardy, P. (2007): Topological constraints, actions, and reflexes for generalization by optimization. 10th ICA Workshop on Generalisation and Multi Representation. Google Scholar
  22. van Oosterom, P.; de Vries, M. & Meijers, M. (2006): Vario-scale data server in a web service context. Workshop of the ICA Commission on map Generalization and Multiple representation.Google Scholar
  23. Ottens, H. (2004): An Information Model for Strategic Spatial Policy Documents. 7th AGILE Conference on Geographic Information Science, 605-611.Google Scholar
  24. Poppe, E. & Foerster, T. (2006): Automated application-driven generalization of base maps for DURP. Congresbundel 4e GIN Symposium, 84-87.Google Scholar
  25. Regnauld, N. (2006): Improving Efficiency for Developing Automatic Generalization Solutions. ISPRS Workshop: Multiple Representation and Interoperability of Spatial Data, 1-5.Google Scholar
  26. Regnauld, N. (2007): Evolving from automating existing map production systems to producing maps on demand automatically. 10th ICA Workshop on Generalisation and Multiple Representation. Google Scholar
  27. Sarjakoski, T.; Sester, M.; Sarjakoski, L.; Harrie, L.; Hampe, M.; Lehto, L. & Koivula (2005): Web generalisation services in GiMoDig - towards a standardised service for real-time generalisation. T. Toppen, F. & Painho, M. (ed.), AGILE 2005, 509-18.Google Scholar
  28. Sester, M. (2005): Optimization approaches for generalization and data abstraction. International Journal Of Geographical Information Science, 19, 871-897.CrossRefGoogle Scholar
  29. Warmer, J. & Kleppe, A. (2003): The Object Constraint Language. Addison Wesley, 206 pp.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Theodor Foerster
    • 1
  • Jantien Stoter
    • 1
  • Rob Lemmens
    • 1
  1. 1.International Institute for Geoinformation and Earth Observationthe Netherlands

Personalised recommendations