Advertisement

Usage of the SCALASCA toolset for scalable performance analysis of large-scale parallel applications

  • Felix Wolf
  • Brian J. N. Wylie
  • Erika Ábrahám
  • Daniel Becker
  • Wolfgang Frings
  • Karl Fürlinger
  • Markus Geimer
  • Marc-André Hermanns
  • Bernd Mohr
  • Shirley Moore
  • Matthias Pfeifer
  • Zoltán Szebenyi

Abstract

scalasca is a performance toolset that has been specifically designed to analyze parallel application behavior on large-scale systems, but is also well-suited for small- and medium-scale hpc platforms. scalasca offers an incremental performance-analysis process that integrates runtime summaries with in-depth studies of concurrent behavior via event tracing, adopting a strategy of successively refined measurement configurations. A distinctive feature of scalasca is its ability to identify wait states even for very large processor counts. The current version supports the mpi, Openmp and hybrid programming constructs most widely used in highly-scalable hpc applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Becker, D., Rabenseifner, R., Wolf, F.: Timestamp synchronization for event traces of large-scale message-passing applications. In: Proc. of the 14th European Parallel Virtual Machine and Message Passing Interface Conference (EuroPVM/MPI), Lecture Notes in Computer Science, vol. 4757, pp. 315–325. Springer, Paris, France (2006) CrossRefGoogle Scholar
  2. 2.
    Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming interface for performance evaluation on modern processors. International Journal of High Performance Computing Applications 14(3), 189–204 (2000) CrossRefGoogle Scholar
  3. 3.
    Geimer, M., Wolf, F., Wylie, B., Mohr, B.: Scalable parallel trace-based performance analysis. In: Proc. of the 13th European Parallel Virtual Machine and Message Passing Interface Conference (EuroPVM/MPI), Lecture Notes in Computer Science, vol. 4192, pp. 303–312. Springer, Bonn, Germany (2006) CrossRefGoogle Scholar
  4. 4.
    Labarta, J., Girona, S., Pillet, V., Cortes, T., Gregoris, L.: DiP : A parallel program development environment. In: Proc. of the 2nd International Euro-Par Conference, pp. 665–674. Springer, Lyon, France (1996) Google Scholar
  5. 5.
    Nagel, W., Weber, M., Hoppe, H.C., Solchenbach, K.: VAMPIR: Visualization and analysis of MPI resources. Supercomputer 63, XII(1), 69–80 (1996) Google Scholar
  6. 6.
    Oliker, L., Canning, A., Carter, J., Iancu, C., Lijewski, M., Kamil, S., Shalf, J., Shan, H., Strohmaier, E., Ethier, S., Goodale, T.: Scientific application performance on candidate petascale platforms. In: Proc. of the International Parallel & Distributed Processing Symposium (IPDPS). Long Beach, CA (2007) Google Scholar
  7. 7.
  8. 8.
    Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S.: An algebra for cross-experiment performance analysis. In: Proc. of the International Conference on Parallel Processing (ICPP), pp. 63–72. IEEE Society, Montreal, Canada (2004) Google Scholar
  9. 9.
  10. 10.
    Vanter, M.V.D., Post, D., Zosel, M.: HPC needs a tool strategy. In: Proc. of the 2nd International Workshop on Software Engineering for High Performance Computing System Applications (SE-HPCS) (2005) Google Scholar
  11. 11.
    Wolf, F., Mohr, B.: Automatic performance analysis of hybrid MPI/OpenMP applications. Journal of Systems Architecture 49(10-11), 421–439 (2003) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Felix Wolf
    • 1
    • 2
  • Brian J. N. Wylie
    • 1
  • Erika Ábrahám
    • 1
  • Daniel Becker
    • 1
    • 2
  • Wolfgang Frings
    • 1
  • Karl Fürlinger
    • 3
  • Markus Geimer
    • 1
  • Marc-André Hermanns
    • 1
  • Bernd Mohr
    • 1
  • Shirley Moore
    • 3
  • Matthias Pfeifer
    • 1
    • 2
  • Zoltán Szebenyi
    • 1
    • 2
  1. 1.Jülich Supercomputing Centre, Forschungszentrum JülichGermany
  2. 2.Department of Computer Science and Aachen Institute for Advanced Study in Computational Engineering ScienceRWTH Aachen UniversityGermany
  3. 3.Innovative Computing LaboratoryUniversity of TennesseeUSA

Personalised recommendations