Performance Analysis of Large-Scale OpenMP and Hybrid MPI/OpenMP Applications with Vampir NG

  • Holger Brunst
  • Bernd Mohr
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4315)

Abstract

This paper presents a tool setup for comprehensive event-based performance analysis of large-scale openmp and hybrid openmp mpi applications. The kojak framework is used for portable code instrumentation and automatic analysis while the new Vampir NG infrastructure serves as generic visualization engine for both openmp and mpi performance properties. The tools share the same data base which enables a smooth transition from bottleneck auto-detection to manual in-depth visualization and analysis. With Vampir NG being a distributed data-parallel architecture, large problems on very large scale systems can be addressed.

Keywords

Parallel Computing openmp Program Analysis Instrumentation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zaki, O., Lusk, E., Gropp, W., Swider, D.: Toward scalable performance visualization with Jumpshot. High Performance Computing Applications 13, 277–288 (1999)CrossRefGoogle Scholar
  2. 2.
    Rose, L.D., Zhang, Y., Reed, D.A.: Svpablo: A multi-language performance analysis system. In: 10th International Conference on Computer Performance Evaluation - Modelling Techniques and Tools - Performance Tools 1998, Palma de Mallorca, Spain, pp. 352–355 (1998)Google Scholar
  3. 3.
    de Kergommeaux, J.C., de Oliveira Stein, B., Bernard, P.: Pajè, an interactive visualization tool for tuning multi-threaded parallel applications. Parallel Computing 26, 1253–1274 (2000)MATHCrossRefGoogle Scholar
  4. 4.
    European Center for Parallelism of Barcelona (CEPBA): Paraver - Parallel Program Visualization and Analysis Tool - Reference Manual (2000), http://www.cepba.upc.es/paraver
  5. 5.
    Intel: Intel thread checker (2005), http://www.intel.com/software/products/threading/tcwin
  6. 6.
    Mohr, B., Mallony, A., Hoppe, H.C., Schlimbach, F., Haab, G., Shah, S.: A Performance Monitoring Interface for OpenMP. In: Proceedings of the fourth European Workshop on OpenMP - EWOMP 2002 (September 2002)Google Scholar
  7. 7.
    Mohr, B., Malony, A., Shende, S., Wolf, F.: Design and Prototype of a Performance Tool Interface for OpenMP. The Journal of Supercomputing 23, 105–128 (2002)MATHCrossRefGoogle Scholar
  8. 8.
    Bell, R., Malony, A.D., Shende, S.: A Portable, Extensible, and Scalable Tool for Parallel Performance Profile Analysis. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.) Euro-Par 2003. LNCS, vol. 2790, pp. 17–26. Springer, Heidelberg (2003)Google Scholar
  9. 9.
    Lindlan, K.A., Cuny, J., Malony, A.D., Shende, S., Mohr, B., Rivenburgh, R., Rasmussen, C.: A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software with Templates. In: Proceedings of Supercomputing 2000 (November 2000)Google Scholar
  10. 10.
    Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A Portable Programming Interface for Performance Evaluation on Modern Processors. The International Journal of High Performance Computing Applications 14, 189–204 (2000)CrossRefGoogle Scholar
  11. 11.
    Wolf, F., Mohr, B.: Automatic Performance Analysis of Hybrid MPI/OpenMP Applications. Journal of Systems Architecture, Special Issue ’Evolutions in parallel distributed and network-based processing’ 49, 421–439 (2003)Google Scholar
  12. 12.
    Nagel, W., Arnold, A., Weber, M., Hoppe, H.C., Solchenbach, K.: Vampir: Visualization and Analysis of MPI Resources. Supercomputer 12, 69–80 (1996)Google Scholar
  13. 13.
    Brunst, H., Nagel, W.E., Malony, A.D.: A distributed performance analysis architecture for clusters. In: IEEE International Conference on Cluster Computing, Cluster 2003, Hong Kong, China, pp. 73–81. IEEE Computer Society, Los Alamitos (2003)CrossRefGoogle Scholar
  14. 14.
    Fahringer, T., Gerndt, M., Riley, G., Träff, J.L.: Formalizing OpenMP performance properties with ASL. In: Valero, M., Joe, K., Kitsuregawa, M., Tanaka, H. (eds.) ISHPC 2000. LNCS, vol. 1940, pp. 428–439. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Lawrence Livermode National Laboratory: the sPPM Benchmark Code (2002), http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Holger Brunst
    • 1
  • Bernd Mohr
    • 2
  1. 1.Center for High Performance ComputingDresden University of TechnologyDresdenGermany
  2. 2.Forschungszentrum JülichZAMJülichGermany

Personalised recommendations