Advertisement

Layer-Free Upward Crossing Minimization

  • Markus Chimani
  • Carsten Gutwenger
  • Petra Mutzel
  • Hoi-Ming Wong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5038)

Abstract

An upward drawing of a DAG G is a drawing of G in which all edges are drawn as curves increasing monotonically in the vertical direction. In this paper, we present a new approach for upward crossing minimization, i.e., finding an upward drawing of a DAG G with as few crossings as possible. Our algorithm is based on a two-stage upward planarization approach, which computes a feasible upward planar subgraph in the first step, and re-inserts the remaining edges by computing constraint-feasible upward insertion paths. An experimental study shows that the new algorithm leads to much better results than existing algorithms for upward crossing minimization, including the classical Sugiyama approach.

Keywords

Short Path Directed Acyclic Graph Insertion Sequence Constraint Feasibility Internal Face 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Batini, C., Talamo, M., Tamassia, R.: Computer aided layout of entity relationship diagrams. J. Syst. Software 4, 163–173 (1984)CrossRefGoogle Scholar
  2. 2.
    Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward planarity testing of single-source digraphs. SIAM J. Comput. 27(1), 132–169 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Di Battista, G., Garg, A., Liotta, G., Parise, A., Tamassia, R., Tassinari, E., Vargiu, F., Vismara, L.: Drawing directed acyclic graphs: An experimental study. Int. J. Comput. Geom. Appl. 10(6), 623–648 (2000)zbMATHCrossRefGoogle Scholar
  5. 5.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. Theory Appl. 7(5–6), 303–325 (1997)zbMATHGoogle Scholar
  6. 6.
    Eiglsperger, M., Kaufmann, M., Eppinger, F.: An approach for mixed upward planarization. J. Graph Algorithms Appl. 7(2), 203–220 (2003)MathSciNetGoogle Scholar
  7. 7.
    Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of Sugiyama’s algorithm for layered graph drawing. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 155–166. Springer, Heidelberg (2005)Google Scholar
  8. 8.
    Gansner, E., Koutsofios, E., North, S., Vo, K.-P.: A technique for drawing directed graphs. Software Pract. Exper. 19(3), 214–229 (1993)Google Scholar
  9. 9.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuristics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    OGDF – the Open Graph Drawing Framework. Technical University of Dortmund, Chair of Algorithm Engineering, http://www.ogdf.net
  12. 12.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Sys. Man. Cyb. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Markus Chimani
    • 1
  • Carsten Gutwenger
    • 1
  • Petra Mutzel
    • 1
  • Hoi-Ming Wong
    • 1
  1. 1.Department of Computer ScienceTechnical University of DortmundGermany

Personalised recommendations