Advertisement

Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks

  • Robert Geisberger
  • Peter Sanders
  • Dominik Schultes
  • Daniel Delling
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5038)

Abstract

We present a route planning technique solely based on the concept of node contraction. The nodes are first ordered by ‘importance’. A hierarchy is then generated by iteratively contracting the least important node. Contracting a node v means replacing shortest paths going through v by shortcuts. We obtain a hierarchical query algorithm using bidirectional shortest-path search. The forward search uses only edges leading to more important nodes and the backward search uses only edges coming from more important nodes. For fastest routes in road networks, the graph remains very sparse throughout the contraction process using rather simple heuristics for ordering the nodes. We have five times lower query times than the best previous hierarchical Dijkstra-based speedup techniques and a negative space overhead, i.e., the data structure for distance computation needs less space than the input graph. CHs can be combined with many other route planning techniques, leading to improved performance for many-to-many routing, transit-node routing, goal-directed routing or mobile and dynamic scenarios.

Keywords

Short Path Road Network Priority Queue Query Time Input Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sanders, P., Schultes, D.: Engineering fast route planning algorithms. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 23–36. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Schultes, D.: Route Planning in Road Networks. PhD thesis (2008)Google Scholar
  3. 3.
    Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Sanders, P., Schultes, D.: Highway hierarchies hasten exact shortest path queries. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 568–579. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Sanders, P., Schultes, D.: Engineering highway hierarchies. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 804–816. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 38–51. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Bauer, R., Delling, D.: SHARC: Fast and robust unidirectional routing. In: Workshop on Algorithm Engineering and Experiments (ALENEX) (2008)Google Scholar
  8. 8.
    Bast, H., Funke, S., Sanders, P., Schultes, D.: Fast routing in road networks with transit nodes. Science 316(5824), 566 (2007)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining hierarchical and goal-directed speed-up techniques for Dijkstra’s algorithm. In: WEA 2008. LNCS, vol. 5038, Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Knopp, S., Sanders, P., Schultes, D., Schulz, F., Wagner, D.: Computing many-to-many shortest paths using highway hierarchies. In: Workshop on Algorithm Engineering and Experiments (ALENEX) (2007)Google Scholar
  11. 11.
    Maue, J., Sanders, P., Matijevic, D.: Goal directed shortest path queries using Precomputed Cluster Distances. In: Àlvarez, C., Serna, M.J. (eds.) WEA 2006. LNCS, vol. 4007, pp. 316–328. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Geisberger, R., Sanders, P., Schultes, D.: Better approximation of betweenness centrality. In: Workshop on Algorithm Engineering and Experiments (ALENEX) (2008)Google Scholar
  13. 13.
    Gutman, R.: Reach-based routing: A new approach to shortest path algorithms optimized for road networks. In: Workshop on Algorithm Engineering and Experiments (ALENEX)., pp. 100–111 (2004)Google Scholar
  14. 14.
    Lauther, U.: An extremely fast, exact algorithm for finding shortest paths in static networks with geographical background. In: Geoinformation und Mobilität – von der Forschung zur praktischen Anwendung, vol. 22, pp. 219–230. IfGI prints, Institut für Geoinformatik, Münster (2004)Google Scholar
  15. 15.
    Köhler, E., Möhring, R.H., Schilling, H.: Acceleration of shortest path and constrained shortest path computation. In: WEA 2005. LNCS, vol. 3503, Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Highway hierarchies star. In: 9th DIMACS Implementation Challenge [20] (2006)Google Scholar
  17. 17.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Better landmarks within reach. In: 9th DIMACS Implementation Challenge [20] (2006)Google Scholar
  18. 18.
    Sanders, P., Schultes, D., Vetter, C.: Mobile Route Planning (2008) in preparation, http://algo2.iti.uka.de/schultes/hwy/
  19. 19.
    R Development Core Team: R: A Language and Environment for Statistical Computing (2004), http://www.r-project.org
  20. 20.
    9th DIMACS Implementation Challenge: Shortest Paths (2006), http://www.dis.uniroma1.it/~challenge9/

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Robert Geisberger
    • 1
  • Peter Sanders
    • 1
  • Dominik Schultes
    • 1
  • Daniel Delling
    • 1
  1. 1.Universität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations