Reconstructing Phylogenetic Networks with One Recombination

  • Ernst Althaus
  • Rouven Naujoks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5038)

Abstract

In this paper we propose a new method for reconstructing phylogenetic networks under the assumption that recombination events have occurred rarely. For a fixed number of recombinations, we give a generalization of the maximum parsimony criterion. Furthermore, we describe an exact algorithm for one recombination event and show that in this case our method is not only able to identify the recombined sequence but also to reliably reconstruct the complete evolutionary history.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Naujoks, R.: Computing steiner minimum trees in hamming metric. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 172–181 (2006)Google Scholar
  2. 2.
    Chare, E., Gould, E., Holmes, E.: Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense rna viruses. J. Gen. Virol. 84 (2003)Google Scholar
  3. 3.
    Fitch, W.M.: Toward defining the course of evolution: minimum change for a specified tree topology. Systematic Zoology 20 (1971)Google Scholar
  4. 4.
    Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics (2003)Google Scholar
  5. 5.
    Hein, J.: A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36 (1993)Google Scholar
  6. 6.
    Huson, D.H., Kloepper, T.H.: Computing recombination networks from binary sequences. Bioinformatics 21(2), 159–165 (2005)CrossRefGoogle Scholar
  7. 7.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Inferring phylogenetic networks by the maximum parsimony criterion: A case study. Molecular Biology and Evolution 24(1) (2005)Google Scholar
  8. 8.
    Jin, G., Nakhleh, L., Snir, S., Tuller, T.: Efficient parsimony-based methods for phylogenetic network reconstruction. Bioinformatics 23(2) (2007)Google Scholar
  9. 9.
    Kececioglu, J., Gusfield, D.: Reconstructing a history of recombinations from a set of sequences. Discrete Appl. Math. 88(1-3), 239–260 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Makarenkov, V., Kevorkov, D., Legendre, P.: Phylogenetic network reconstruction approaches. Bioinformatics 6 (2006)Google Scholar
  11. 11.
    Maydt, J., Lengauer, T.: Recco: recombination analysis using cost optimization. Bioinformatics 22(9), 1064–1071 (2006)CrossRefGoogle Scholar
  12. 12.
    Morin, M.M., Moret, B.M.E.: Netgen: generating phylogenetic networks with diploid hybrids. Bioinformatics 22(15) (2006)Google Scholar
  13. 13.
    Nakhleh, L., Jin, G., Zhao, F., Mellor-Crummey, J.: Reconstructing phylogenetic networks using maximum parsimony. In: Proceedings of the 2005 IEEE Computational Systems Bioinformatics Conference, Stanford (2005)Google Scholar
  14. 14.
    Polzin, T.: Algorithms for the Steiner Problem in Networks. PhD thesis, Universität des Saarlandes (2003)Google Scholar
  15. 15.
    Posada, D., Crandall, K.A., Holmes, E.C.: Recombination in evolutionary genomics. Annu. Rev. Genet. 36 (2002)Google Scholar
  16. 16.
    Rambaut, A., Grassly, N.C.: Seq-gen: an application for the monte carlo simulation of dna sequence evolution along phylogenetic trees. Computer Applications in the Biosciences 13(3), 235–238 (1997)Google Scholar
  17. 17.
    Ruths, D., Nakhleh, L.: Recombination and phylogeny: Effects and detection. International Journal on Bioinformatics Research and Applications 1(2) (2005)Google Scholar
  18. 18.
    Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination. Journal of Computational Biology 8 (2001)Google Scholar
  19. 19.
  20. 20.
  21. 21.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ernst Althaus
    • 1
  • Rouven Naujoks
    • 1
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany

Personalised recommendations