Advertisement

Optimal University Course Timetables and the Partial Transversal Polytope

  • Gerald Lach
  • Marco E. Lübbecke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5038)

Abstract

University course timetabling is the conflict-free assignment of courses to weekly time slots and rooms subject to various hard and soft constraints. One goal is to meet as closely as possible professors’ preferences. Building on an intuitive integer program (IP), we develop an exact decomposition approach which schedules courses first, and matches courses/times to rooms in a second stage. The subset of constraints which ensures a feasible room assignment defines the well-known partial transversal polytope. We describe it as a polymatroid, and thereby obtain a complete characterization of its facets. This enables us to add only strong valid inequalities to the first stage IP. In fact, for all practical purposes the number of facets is small. We present encouraging computational results on real-world and simulated timetabling data. The sizes of our optimally solvable instances (respecting all hard constraints) are the largest reported in the literature by far.

Keywords

integer programming partial transversal polytope university course timetabling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Burke, E., Rudová, H. (eds.): PATAT 2006: Proceedings of the 6th International Conference on the Practice and Theory of Automated Timetabling, Berlin. Lect. Notes Comp. Science. Springer, Heidelberg (2007), http://patat06.muni.cz/proceedings.html Google Scholar
  2. 2.
    Burke, E., Jackson, K., Kingston, J.H., Weare, R.: Automated university timetabling: The state of the art. Comput. J. 40(9), 565–571 (1997)CrossRefGoogle Scholar
  3. 3.
    Lovász, L., Plummer, M.D.: Matching Theory, p. 544. North-Holland, Amsterdam (1986)zbMATHGoogle Scholar
  4. 4.
    Schrijver, A.: Combinatorial Optimization Polyhedra and Efficiency. Springer, Berlin (2003)zbMATHGoogle Scholar
  5. 5.
    ITC2007: 2nd International Timetabling Competition, http://www.cs.qub.ac.uk/itc2007/
  6. 6.
    Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling. European J. Oper. Res. 140(2), 266–280 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2), 87–127 (1999)CrossRefGoogle Scholar
  8. 8.
    Daskalaki, S., Birbas, T., Housos, E.: An integer programming formulation for a case study in university timetabling. European J. Oper. Res. 153, 117–135 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  9. 9.
    Schimmelpfeng, K., Helber, S.: Application of a real-world university-course timetabling model solved by integer programming. OR Spectrum 29, 783–803 (2007)CrossRefGoogle Scholar
  10. 10.
    Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems. OR Spectrum (in press, 2007)Google Scholar
  11. 11.
    Meyers, C., Orlin, J.B.: Very large-scale neighborhood search techniques in timetabling problems. In: PATAT 2006: Proceedings of the 6th International Conference on the Practice and Theory of Automated Timetabling, Berlin, pp. 36–52. springer, Heidelberg (2007)Google Scholar
  12. 12.
    Carter, M.: A comprehensive course timetabling and student scheduling system at the university of Waterloo. In: Burke, E., Erben, W. (eds.) PATAT 2000. LNCS, vol. 2079, pp. 64–82. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  13. 13.
    Daskalaki, S., Birbas, T.: Efficient solutions for a university timetabling problem through integer programming. European J. Oper. Res. 127(1), 106–120 (2005)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Qualizza, A., Serafini, P.: A column generation scheme for faculty timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 161–173. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Edmonds, J.: Maximum matching and a polyhedron with 0,1-vertices. J. Res. Nat. Bur. Standards 69B, 125–130 (1965)MathSciNetGoogle Scholar
  16. 16.
    Balas, E., Pulleyblank, W.: The perfectly matchable subgraph polytope of a bipartite graph. Networks 13, 495–516 (1983)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Lach, G., Lübbecke, M.: Curriculum based course timetabling: Optimal solutions to the Udine benchmark instances. Preprint 2008/9, Technische Universität Berlin, Institut für Mathematik (2008)Google Scholar
  18. 18.
    Lach, G.: Modelle und Algorithmen zur Optimierung der Raumvergabe der TU Berlin. Master’s thesis, Technische Universität Berlin, Institut für Mathematik (in German, 2007)Google Scholar
  19. 19.
    Grinstead, C., Snell, J.: Introduction to Probability, 2nd edn. American Mathematical Society, Providence, RI (2003), http://math.dartmouth.edu/~prob/prob/prob.pdf Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Gerald Lach
    • 1
  • Marco E. Lübbecke
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations