Approximating Continuous Systems by Timed Automata

  • Oded Maler
  • Grégory Batt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5054)


In this work we develop a new technique for over-approximating (in the sense of timed trace inclusion) continuous dynamical systems by timed automata. This technique refines commonly-used discrete abstractions which are often too coarse to be useful. The essence of our technique is the partition of the state space into cubes and the allocation of a clock for each dimension. This allows us to get much better approximations of the behavior. We specialize this technique to multi-affine systems, a class of nonlinear systems of primary importance for the analysis of biochemical systems and demonstrate its applicability on an example taken from synthetic biology.


Hybrid System Synthetic Biology Continuous System Hybrid Automaton Reachability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ACH+95]
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The Algorithmic Analysis of Hybrid Systems. Theoretical Computer Science 138, 3–34 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [AD94]
    Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Science 126, 183–235 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [AFH96]
    Alur, R., Feder, T., Henzinger, T.A.: The Benefits of Relaxing Punctuality. Journal of the ACM 43, 116–146 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [ABDM00]
    Asarin, A., Bournez, O., Dang, T., Maler, O.: Approximate Reachability Analysis of Piecewise-linear Dynamical Systems. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 20–31. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. [ADF+06]
    Asarin, E., Dang, T., Frehse, G., Girard, A., Le Guernic, C., Maler, O.: Recent Progress in Continuous and Hybrid Reachability Analysis. In: CACSD (2006)Google Scholar
  6. [ADG03]
    Asarin, E., Dang, T., Girard, A.: Reachability Analysis of Nonlinear Systems using Conservative Approximation. In: Maler, O., Pnueli, A. (eds.) HSCC 2003. LNCS, vol. 2623, pp. 20–35. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [AMP95]
    Asarin, E., Maler, O., Pnueli, A.: Reachability Analysis of Dynamical Systems having Piecewise-Constant Derivatives. Theoretical Computer Science 138, 35–65 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. [BRJ+05]
    Batt, G., Ropers, D., de Jong, H., Geiselmann, J., Mateescu, R., Page, M., Schneider, D.: Validation of qualitative models of genetic regulatory networks by model checking: Analysis of the nutritional stress response in Escherichia coli. Bioinformatics 21, 19–28 (2005)CrossRefGoogle Scholar
  9. [BYWB07]
    Batt, G., Yordanov, B., Weiss, R., Belta, C.: Robustness analysis and tuning of synthetic gene networks. Bioinformatics 23, 2415–2422 (2007)CrossRefGoogle Scholar
  10. [BH06]
    Belta, C., Habets, L.C.G.J.M.: Controlling a Class of Nonlinear Systems on Rectangles. IEEE Trans. on Automatic Control 51, 1749–1759 (2006)CrossRefMathSciNetGoogle Scholar
  11. [BT00]
    Botchkarev, O., Tripakis, S.: Verification of Hybrid Systems with Linear Differential Inclusions using Ellipsoidal Approximations. In: Lynch, N.A., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 73–88. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. [BMP99]
    Bournez, O., Maler, O., Pnueli, A.: Orthogonal Polyhedra: Representation and Computation. In: Vaandrager, F.W., van Schuppen, J.H. (eds.) HSCC 1999. LNCS, vol. 1569, pp. 46–60. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. [BGM02]
    Bozga, M., Graf, S., Mounier, L.: IF-2.0: A Validation Environment for Component-Based Real-Time Systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 343–348. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. [CK98]
    Chutinan, A., Krogh, B.H.: Computing Polyhedral Approximations to Dynamic Flow Pipes. In: CDC 1998. IEEE, Los Alamitos (1998)Google Scholar
  15. [CK03]
    Chutinan, A., Krogh, B.H.: Computational Techniques for Hybrid System Verification. IEEE Trans. on Automatic Control 8, 64–75 (2003)CrossRefMathSciNetGoogle Scholar
  16. [DM98]
    Dang, T., Maler, O.: Reachability Analysis via Face Lifting. In: Henzinger, T.A., Sastry, S.S. (eds.) HSCC 1998. LNCS, vol. 1386, pp. 96–109. Springer, Heidelberg (1998)Google Scholar
  17. [JPHG01]
    de Jong, H., Page, M., Hernandez, C., Geiselmann, J.: Qualitative Simulation of Genetic Regulatory Networks: Method and Application. In: IJCAI-2001, pp. 67–73 (2001)Google Scholar
  18. [F05]
    Frehse, G.: PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 258–273. Springer, Heidelberg (2005)Google Scholar
  19. [HKI+07]
    Halasz, A., Kumar, V., Imielinski, M., Belta, C., Sokolsky, O., Pathak, S.: Analysis of Lactose Metabolism in E.coli using Reachability Analysis of Hybrid Systems. IEE Proceedings - Systems Biology 21, 130–148 (2007)Google Scholar
  20. [HHW98]
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Algorithmic Analysis of Nonlinear Hybrid Systems. IEEE Trans. on Automatic Control 43, 540–554 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  21. [HKPV98]
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s Decidable about Hybrid Automata? Journal of Computer and System Sciences 57, 94–124 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  22. [HTW05]
    Hooshangi, S., Thiberge, S., Weiss, R.: Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. PNAS 102, 3581–3586 (2005)CrossRefGoogle Scholar
  23. [HHW97]
    Henzinger, T.A., Ho, P.-H., Wong-Toi, H.: Hytech: A Model Checker for Hybrid Systems. Software Tools for Technology Transfer 1, 110–122 (1997)zbMATHCrossRefGoogle Scholar
  24. [Koy90]
    Koymans, R.: Specifying Real-time Properties with Metric Temporal Logic. Real-time Systems 2, 255–299 (1990)CrossRefGoogle Scholar
  25. [LPY97]
    Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. Software Tools for Technology Transfer 1, 134–152 (1997)zbMATHCrossRefGoogle Scholar
  26. [OSY94]
    Olivero, A., Sifakis, J., Yovine, S.: Using abstractions for the verification of linear hybrid systems. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818, pp. 81–94. Springer, Heidelberg (1994)Google Scholar
  27. [SKE00]
    Stursberg, O., Kowalewski, S., Engell, S.: On the Generation of Timed Discrete Approximations for Continuous Systems. Mathematical and Computer Models of Dynamical Systems 6, 51–70 (2000)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Oded Maler
    • 1
  • Grégory Batt
    • 2
  1. 1.Verimag-UJF-CNRSGièresFrance
  2. 2.INRIA RocquencourtLe ChesnayFrance

Personalised recommendations