Design Issues for Qualitative Modelling of Biological Cells with Petri Nets

  • Elzbieta Krepska
  • Nicola Bonzanni
  • Anton Feenstra
  • Wan Fokkink
  • Thilo Kielmann
  • Henri Bal
  • Jaap Heringa
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5054)


Petri nets are a widely used formalism to qualitatively model concurrent systems such as a biological cell. We present techniques for modelling biological processes as Petri nets for further analyses and in-silico experiments. Instead of extending the formalism with ,,colours” or rates, as is most often done, we focus on preserving the simplicity of the formalism and developing an execution semantics which resembles biology – we apply a principle of maximal parallelism and introduce the novel concept of bounded execution with overshooting. A number of modelling solutions are demonstrated using the example of the well-studied C. elegans vulval development process. To date our model is still under development, but first results, based on Monte Carlo simulations, are promising.


Biological Cell Boolean Network Lateral Signal Qualitative Modelling Anchor Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, U.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman & Hall/CRC (2006)Google Scholar
  2. 2.
    Genrich, H., Küffner, R., Voss, K.: Executable Petri net models for the analysis of metabolic pathways. International Journal on Software Tools for Technology Transfer (STTT) 3(4), 394–404 (2001)MATHGoogle Scholar
  3. 3.
  4. 4.
    Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)CrossRefGoogle Scholar
  5. 5.
    Srivastava, R., You, L., Summers, J., Yin, J.: Stochastic vs. deterministic modeling of intracellular viral kinetics. Journal of Theoretical Biology 218(3), 309–321 (2002)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis techniques to signal transduction pathways. BMC Bioinformatics 7, 482 (2006)CrossRefGoogle Scholar
  7. 7.
    Chaouiya, C.: Petri net modelling of biological networks. Briefings in Bioinformatics 8(4), 210–219 (2007)CrossRefGoogle Scholar
  8. 8.
  9. 9.
    Reddy, V., Mavrovouniotis, M., Liebman, M.: Qualitative analysis of biochemical reaction system. Computers in Biology and Medicine 26(1), 9–24 (1996)CrossRefGoogle Scholar
  10. 10.
    Fisher, J., Piterman, N., Hajnal, A., Henzinger, T.A.: Predictive modeling of signaling crosstalk during C. elegans vulval development. PLoS Computational Biology 3(5), 92 (2007)CrossRefGoogle Scholar
  11. 11.
    Petri, C.A.: Kommunikation mit Automaten. Schriften des IIM Nr. 2, Institut für Instrumentelle Mathematik, Bonn (1962)Google Scholar
  12. 12.
    Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the IEEE 77(4), 541–580 (1989)CrossRefGoogle Scholar
  13. 13.
    Kleijn, J.H., Koutny, M., Rozenberg, G.: Towards a Petri net semantics for membrane systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Distributed ASCI Supercomputer DAS-3,
  15. 15.
  16. 16.
  17. 17.
    Fisher, J., Henzinger, T.A., Mateescu, M., Piterman, N.: Bounded asynchrony: A biologically inspired notion of concurrency. Technical report, MTC (2007)Google Scholar
  18. 18.
    Clarke, D., Costa, D., Arbab, F.: Modelling coordination in biological systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2004. LNCS, vol. 4313, pp. 9–25. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Koch, I., Junker, B.H., Heiner, M.: Application of Petri net theory for modelling and validation of the sucrose breakdown pathway in the potato tuber. Bioinformatics 21(7), 1219–1226 (2005)CrossRefGoogle Scholar
  20. 20.
    Li, C., Ge, Q.W., Nakata, M., Matsuno, H., Miyando, S.: Modelling and simulation of signal transductions in an apoptosis pathway by using timed Petri nets. Journal of Biosciences 32, 113–127 (2007)CrossRefGoogle Scholar
  21. 21.
    Goss, P., Peccoud, J.: Quantitative modeling of stochastic systems in molecular biology by using stochastic Petri nets. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 95(12), 6750–6755 (1998)CrossRefGoogle Scholar
  22. 22.
  23. 23.
    Srivastava, R., Peterson, M.S., Bentley, W.E.: Stochastic kinetic analysis of the Escherichia coli stress circuit using σ-32-targeted antisense. Biotechnology and Bioengineering 75(1), 120–129 (2001)CrossRefGoogle Scholar
  24. 24.
    Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid Petri net representation of gene regulatory network. In: Proceedings of Pacific Symposium on Biocomputing, vol. 5, pp. 341–352 (2000)Google Scholar
  25. 25.
    Hofestädt, R., Thelen, S.: Quantitative modeling of biochemical networks. In Silico Biology 6, 39–53 (1998)Google Scholar
  26. 26.
    Matsuno, H., Li, C., Miyano, S.: Petri net based descriptions for systematic understanding of biological pathways. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Science E89-A(11), 3166–3174 (2006)CrossRefGoogle Scholar
  27. 27.
    Simao, E., Remy, E., Thieffry, D., Chaouiya, C.: Qualitative modelling of regulated metabolic pathways: application to the tryptophan biosynthesis in E. Coli. Bioinformatics 21(2), 190–196 (2005)CrossRefGoogle Scholar
  28. 28.
    Steggles, L., Banks, R., Wipat, A.: Modelling and analysing genetic networks: From Boolean networks to Petri nets. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 127–141. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  29. 29.
    Peleg, M., Rubin, D., Altman, R.B.: Using Petri net tools to study properties and dynamics of biological systems. Journal of the American Medical Informatics Association (JAMIA) 12(2), 181–199 (2005)CrossRefGoogle Scholar
  30. 30.
    Fisher, J., Henzinger, T.A.: Executable cell biology. Nature Biotechnology 25(11), 1239–1249 (2007)CrossRefGoogle Scholar
  31. 31.
    Yoo, A.S., Bais, C., Greenwald, I.: Crosstalk between the EGFR and LIN-12/Notch pathways in C. elegans vulval development. Science 303(5658), 663–666 (2004)CrossRefGoogle Scholar
  32. 32.
    Shaye, D.D., Greenwald, I.: Endocytosis-mediated downregulation of LIN-12/Notch upon Ras activation in Caenorhabditis elegans. Nature 420(6916), 686–690 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Elzbieta Krepska
    • 1
  • Nicola Bonzanni
    • 1
  • Anton Feenstra
    • 1
  • Wan Fokkink
    • 1
  • Thilo Kielmann
    • 1
  • Henri Bal
    • 1
  • Jaap Heringa
    • 1
  1. 1.Department of Computer ScienceVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations