Workspace-Based Connectivity Oracle: An Adaptive Sampling Strategy for PRM Planning

  • Hanna Kurniawati
  • David Hsu
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 47)

Abstract

This paper presents Workspace-based Connectivity Oracle (WCO), a dynamic sampling strategy for probabilistic roadmap planning. WCO uses both domain knowledge—specifically, workspace geometry—and sampling history to construct dynamic sampling distributions. It is composed of many component samplers, each based on a geometric feature of a robot. A component sampler updates its distribution, using information from the workspace geometry and the current state of the roadmap being constructed. These component samplers are combined through the adaptive hybrid sampling approach, based on their sampling histories. In the tests on rigid and articulated robots in 2-D and 3-D workspaces, WCO showed strong performance, compared with sampling strategies that use dynamic sampling or workspace information alone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amenta, N., Choi, S., Kolluri, R.: The power crust. In: Proc. ACM Symp. on Solid Modeling, pp. 249–260 (2001)Google Scholar
  2. 2.
    Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: The nonstochastic multiarmed bandit problem. SIAM J. Computing 32(1), 48–77 (2002)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Barber, C., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. on Mathematical Software 22(4), 469–483 (1996)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boor, V., Overmars, M., van der Stappen, A.: The gaussian sampling strategy for probabilistic roadmap planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1018–1023 (1999)Google Scholar
  5. 5.
    Burns, B., Brock, O.: Toward optimal configuration space sampling. In: Robotics: Science and Systems (2005)Google Scholar
  6. 6.
    Choset, H., Lynch, K., Hutchinson, S., Kantor, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations, ch.7. The MIT Press, Cambridge (2005)Google Scholar
  7. 7.
    Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)MATHGoogle Scholar
  8. 8.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)MATHGoogle Scholar
  9. 9.
    Foskey, M., Garber, M., Lin, M., Manocha, D.: A Voronoi-based hybrid motion planner. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 55–60 (2001)Google Scholar
  10. 10.
    Holleman, C., Kavraki, L.: A framework for using the workspace medial axis in PRM planners. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 1408–1413 (2000)Google Scholar
  11. 11.
    Hsu, D., Latombe, J.-C., Kurniawati, H.: On the probabilistic foundations of probabilistic roadmap planning. Int. J. Robotics Research 25(7), 627–643 (2006)CrossRefGoogle Scholar
  12. 12.
    Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. Int. J. Comp. Geometry & Applications 9(4–5), 495–512 (1999)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Hsu, D., Sánchez-Ante, G., Sun, Z.: Hybrid PRM sampling with a cost-sensitive adaptive strategy. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3885–3891 (2005)Google Scholar
  14. 14.
    Kavraki, L., Kolountzakis, M., Latombe, J.-C.: Analysis of probabilistic roadmaps for path planning. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 3020–3025 (1996)Google Scholar
  15. 15.
    Kavraki, L., Latombe, J.-C., Motwani, R., Raghavan, P.: Randomized query processing in robot path planning. J. Comp. & Syst. Sci. 57(1), 50–60 (1998)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kavraki, L., Švestka, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration space. IEEE Trans. on Robotics & Automation 12(4), 566–580 (1996)CrossRefGoogle Scholar
  17. 17.
    Kurniawati, H., Hsu, D.: Workspace importance sampling for probabilistic roadmap planning. In: Proc. IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, pp. 1618–1623 (2004)Google Scholar
  18. 18.
    LaValle, S., Kuffner, J.: Randomized kinodynamic planning. Int. J. Robotics Research 20(5), 378–400 (2001)CrossRefGoogle Scholar
  19. 19.
    Morales, M., Tapia, L., Pearce, R., Rodriguez, S., Amato, N.: A machine learning approach for feature-sensitive motion planning. In: Algorithmic Foundations of Robotics VI, pp. 361–376 (2004)Google Scholar
  20. 20.
    Švestka, P.: On probabilistic completeness and expected complexity for probabilistic path planning. Technical Report UU-CS-1996-08, Utrecht University, Dept. of Information & Computing Sciences, Utrecht, the Netherlands (1996)Google Scholar
  21. 21.
    van den Berg, J., Overmars, M.: Using workspace information as a guide to non-uniform sampling in probabilistic roadmap planners. Int. J. Robotics Research 24(12), 1055–1071 (2005)CrossRefGoogle Scholar
  22. 22.
    Yang, Y., Brock, O.: Adapting the sampling distribution in PRM planners based on an approximated medial axis. In: Proc. IEEE Int. Conf. on Robotics & Automation, pp. 4405–4410 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Hanna Kurniawati
    • 1
  • David Hsu
    • 1
  1. 1.National University of Singapore, SingaporeSingapore

Personalised recommendations