Algorithmic Foundation of Robotics VII pp 301-316

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 47) | Cite as

Motion Planning for a Six-Legged Lunar Robot

  • Kris Hauser
  • Timothy Bretl
  • Jean-Claude Latombe
  • Brian Wilcox


This paper studies the motion of a large and highly mobile six-legged lunar vehicle called athlete, developed by the Jet Propulsion Laboratory. This vehicle rolls on wheels when possible, but can use the wheels as feet to walk when necessary. While gaited walking may suffice for most situations, rough and steep terrain requires novel sequences of footsteps and postural adjustments that are specifically adapted to local geometric and physical properties. This paper presents a planner to compute these motions that combines graph searching techniques to generate a sequence of candidate footfalls with probabilistic sample-based planning to generate continuous motions to reach them. The viability of this approach is demonstrated in simulation on several example terrains, even one that requires rappelling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akinc, M., Bekris, K.E., Chen, B.Y., Ladd, A.M., Plaku, E., Kavraki, L.E.: In: Int. Symp. Rob. Res., Siena, Italy (2003)Google Scholar
  2. 2.
    Alami, R., Laumond, J.-P., Siméon, T.: Two manipulation planning algorithms. In: Goldberg, K., Halperin, D., Latombe, J.-C., Wilson, R. (eds.) Alg. Found. Rob., pp. 109–125. A.K. Peters, Wellesley (1995)Google Scholar
  3. 3.
    Bares, J.E., Wettergreen, D.S.: Dante II: Technical description, results and lessons learned. Int. J. Rob. Res. 18(7), 621–649 (1999)CrossRefGoogle Scholar
  4. 4.
    Bicchi, A., Kumar, V.: Robotic grasping and contact: A review. In: IEEE Int. Conf. Rob. Aut., San Francisco, pp. 348–353 (2000)Google Scholar
  5. 5.
    Boissonnat, J.-D., Devillers, O., Lazard, S.: Motion planning of legged robots. SIAM J. Computing 30(1), 218–246 (2000)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Bretl, T.: Motion planning of multi-limbed robots subject to equilibrium constraints: The free-climbing robot problem. Int. J. Rob. Res. 25(4), 317–342 (2006)CrossRefGoogle Scholar
  7. 7.
    Bretl, T., Lall, S.: A fast and adaptive test of static equilibrium for legged robots. In: IEEE Int. Conf. Rob. Aut., Orlando, FL (2006)Google Scholar
  8. 8.
    Bretl, T., Latombe, J.-C., Rock, S.: Toward autonomous free-climbing robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)Google Scholar
  9. 9.
    Caillas, C., Hebert, M., Krotkov, E., Kweon, I., Kanade, T.: Methods for identifying footfall positions for a legged robot. In: Int. Work. Int. Rob. Sys., pp. 244–250 (1989)Google Scholar
  10. 10.
    Chestnutt, J., Kuffner, J., Nishiwaki, K., Kagami, S.: Planning biped navigation strategies in complex environments. In: IEEE Int. Conf. Hum. Rob., Munich, Germany (2003)Google Scholar
  11. 11.
    Choset, H., Lynch, K., Hutchinson, S., Kanto, G., Burgard, W., Kavraki, L., Thrun, S.: Principles of Robot Motion: Theory, Algorithms, and Implementations. MIT Press, Cambridge (2005)MATHGoogle Scholar
  12. 12.
    Cortés, J., Siméon, T., Laumond, J.-P.: A random loop generator for planning the motions of closed kinematic chains using prm methods. In: IEEE Int. Conf. Rob. Aut., Washington, D.C. (2002)Google Scholar
  13. 13.
    Eldershaw, C., Yim, M.: Motion planning of legged vehicles in an unstructured environment. In: IEEE Int. Conf. Rob. Aut., Seoul, South Korea (2001)Google Scholar
  14. 14.
    Estier, T., Crausaz, Y., Merminod, B., Lauria, M., Pguet, R., Siegwart, R.: An innovative space rover with extended climbing abilities. In: Space and Robotics, Albuquerque, NM (2000)Google Scholar
  15. 15.
    Geraerts, R., Overmars, M.: Clearance based path optimization for motion planning. In: IEEE Int. Conf. Rob. Aut., New Orleans, LA (2004)Google Scholar
  16. 16.
    Gottschalk, S., Lin, M., Manocha, D.: OBB-tree: A hierarchical structure for rapid interference detection. In: ACM SIGGRAPH, pp. 171–180 (1996)Google Scholar
  17. 17.
    Han, L., Amato, N.M.: A kinematics-based probabilistic roadmap method for closed chain systems. In: WAFR (2000)Google Scholar
  18. 18.
    Hauser, K., Bretl, T., Latombe, J.-C.: Non-gaited humanoid locomotion planning. In: Humanoids, Tsukuba, Japan (2005)Google Scholar
  19. 19.
    Heiken, G.H., Vaniman, D.T., French, B.M.: Lunar Sourcebook: A User’s Guide to the Moon. Cambridge University Press, Cambridge (1991)Google Scholar
  20. 20.
    Hirose, S., Kunieda, O.: Generalized standard foot trajectory for a quadruped walking vehicle. Int. J. Rob. Res. 10(1), 3–12 (1991)CrossRefGoogle Scholar
  21. 21.
    Hirose, S., Yoneda, K., Tsukagoshi, H.: Titan VII: Quadruped walking and manipulating robot on a steep slope. In: IEEE Int. Conf. Rob. Aut., Albuquerque, NM, pp. 494–500 (1997)Google Scholar
  22. 22.
    Hsu, D., Latombe, J.-C., Motwani, R.: Path planning in expansive configuration spaces. In: IEEE Int. Conf. Rob. Aut., pp. 2219–2226 (1997)Google Scholar
  23. 23.
    Iagnemma, K., Genot, F., Dubowsky, S.: Rapid physics-based rough-terrain rover planning with sensor and control uncertainty. In: IEEE Int. Conf. Rob. Aut., Detroit, MI (1999)Google Scholar
  24. 24.
    Kavraki, L.E., Svetska, P., Latombe, J.-C., Overmars, M.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  25. 25.
    Koga, Y., Latombe, J.-C.: On multi-arm manipulation planning. In: IEEE Int. Conf. Rob. Aut., San Diego, CA, pp. 945–952 (1994)Google Scholar
  26. 26.
    Krotkov, E., Simmons, R.: Perception, planning, and control for autonomous walking with the ambler planetary rover. Int. J. Rob. Res. 15, 155–180 (1996)CrossRefGoogle Scholar
  27. 27.
    Kuffner, Jr., J.J.: Autonomous Agents for Real-Time Animation. PhD thesis, Stanford University (1999)Google Scholar
  28. 28.
    Kuffner Jr., J.J., Nishiwaki, K., Kagami, S., Inaba, M., Inoue, H.: Motion planning for humanoid robots. In: Int. Symp. Rob. Res., Siena, Italy (2003)Google Scholar
  29. 29.
    Lauria, M., Piguet, Y., Siegwart, R.: Octopus: an autonomous wheeled climbing robot. In: CLAWAR (2002)Google Scholar
  30. 30.
    LaValle, S.M., Kuffner Jr., J.J.: Randomized kinodynamic planning. Int. J. Rob. Res. 20(5), 379–400 (2001)CrossRefGoogle Scholar
  31. 31.
    Low, K., Bai, S.: Terrain-evaluation-based motion planning for legged locomotion on irregular terrain. Adv. Rob. 17(8), 761–778 (2003)CrossRefGoogle Scholar
  32. 32.
    Mumm, E., Farritor, S., Pirjanian, P., Leger, C., Schenker, P.: Planetary cliff descent using cooperative robots. Autonomous Robots 16, 259–272 (2004)CrossRefGoogle Scholar
  33. 33.
    Nielsen, C.L., Kavraki, L.E.: A two level fuzzy prm for manipulation planning. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., Takamatsu, Japan, pp. 1716–1721 (2000)Google Scholar
  34. 34.
    Okamura, A., Smaby, N., Cutkosky, M.: An overview of dexterous manipulation. In: IEEE Int. Conf. Rob. Aut., pp. 255–262 (2000)Google Scholar
  35. 35.
    Pai, D.K., Barman, R.A., Ralph, S.K.: Platonic beasts: Spherically symmetric multilimbed robots. Autonomous Robots 2(4), 191–201 (1995)CrossRefGoogle Scholar
  36. 36.
    Pettré, J., Laumond, J.-P., Siméon, T.: A 2-stages locomotion planner for digital actors. In: Eurographics/SIGGRAPH Symp. Comp. Anim. (2003)Google Scholar
  37. 37.
    Sahbani, A., Cortés, J., Siméon, T.: A probabilistic algorithm for manipulation planning under continuous grasps and placements. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., Lausanne, Switzerland, pp. 1560–1565 (2002)Google Scholar
  38. 38.
    Sánchez, G., Latombe, J.-C.: On delaying collision checking in PRM planning: Application to multi-robot coordination. Int. J. of Rob. Res. 21(1), 5–26 (2002)CrossRefGoogle Scholar
  39. 39.
    Schwarzer, F., Saha, M., Latombe, J.-C.: Exact collision checking of robot paths. In: WAFR, Nice, France (December 2002)Google Scholar
  40. 40.
    Shapiro, A., Rimon, E.: PCG: A foothold selection algorithm for spider robot locomotion in 2d tunnels. In: IEEE Int. Conf. Rob. Aut., Taipei, Taiwan, pp. 2966–2972 (2003)Google Scholar
  41. 41.
    Singh, S., Simmons, R., Smith, T., Stentz, A.T., Verma, V., Yahja, A., Schwehr, K.: Recent progress in local and global traversability for planetary rovers. In: IEEE Int. Conf. Rob. Aut. (2000)Google Scholar
  42. 42.
    Song, G., Miller, S., Amato, N.M.: Customizing PRM roadmaps at query time. In: IEEE Int. Conf. Rob. Aut., Seoul, Korea, pp. 1500–1505 (2001)Google Scholar
  43. 43.
    Song, S.-M., Waldron, K.J.: Machines that walk: The adaptive suspension vehicle. The MIT Press, Cambridge (1989)Google Scholar
  44. 44.
    Vougioukas, S.G.: Optimization of robot paths computed by randomized planners. In: IEEE Int. Conf. Rob. Aut., Barcelona, Spain (2005)Google Scholar
  45. 45.
    Wang, L., Chen, C.: A combined optimization method for solving the inverse kinematics problem of mechanical manipulators. IEEE Trans. Robot. Automat. 7(4), 489–499 (1991)CrossRefGoogle Scholar
  46. 46.
    Wettergreen, D., Thorpe, C., Whittaker, W.: Exploring mount erebus by walking robot. Robotics and Autonomous Systems 11, 171–185 (1993)CrossRefGoogle Scholar
  47. 47.
    Yakey, J.H., LaValle, S.M., Kavraki, L.E.: Randomized path planning for linkages with closed kinematic chains. IEEE Trans. Robot. Automat. 17(6), 951–958 (2001)CrossRefGoogle Scholar
  48. 48.
    Yoneda, K., Ito, F., Ota, Y., Hirose, S.: Steep slope locomotion and manipulation mechanism with minimum degrees of freedom. In: IEEE/RSJ Int. Conf. Int. Rob. Sys., pp. 1897–1901 (1999)Google Scholar
  49. 49.
    Zheng, Y.F., Shen, J.: Gait synthesis for the SD-2 biped robot to climb sloping surface. IEEE Trans. Robot. Automat. 6(1), 86–96 (1990)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Kris Hauser
    • 1
  • Timothy Bretl
    • 1
  • Jean-Claude Latombe
    • 1
  • Brian Wilcox
    • 2
  1. 1.Computer Science DepartmentStanford University 
  2. 2.Jet Propulsion LaboratoryCalifornia Institute of Technology 

Personalised recommendations