Symmetry in Integer Linear Programming

Chapter

Abstract

An integer linear program (ILP) is symmetric if its variables can be permuted without changing the structure of the problem. Areas where symmetric ILPs arise range from applied settings (scheduling on identical machines), to combinatorics (code construction), and to statistics (statistical designs construction). Relatively small symmetric ILPs are extremely difficult to solve using branch-and-cut codes oblivious to the symmetry in the problem. This paper reviews techniques developed to take advantage of the symmetry in an ILP during its solution. It also surveys related topics, such as symmetry detection, polyhedral studies of symmetric ILPs, and enumeration of all non isomorphic optimal solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.A. Aloul, A. Ramani, I.L.Markov, and K.A. Sakallah, Solving difficult instances of Boolean satisfiability in the presence of symmetry, IEEE Transactions on CAD 22 (2003) 1117–1137.Google Scholar
  2. 2.
    K.M. Anstreicher, Recent advances in the solution of quadratic assignment problems, Mathematical Programming 97 (2003) 27–42.MathSciNetMATHGoogle Scholar
  3. 3.
    D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The Traveling Salesman Problem, A Computational Study, Princeton, 2006.Google Scholar
  4. 4.
    A. von Arnim, R. Schrader, and Y. Wang, The permutahedron of N-sparse posets, Mathematical Programming 75 (1996) 1–18.CrossRefMathSciNetGoogle Scholar
  5. 5.
    L. Babai, E.M. Luks, and Á. Seress, Fast management of permutation groups I, SIAMJournal on Computing 26 (1997) 1310–1342.CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    E. Balas, A linear characterization of permutation vectors, Management Science Research Report 364, Carnegie Mellon University, Pittsburgh, PA, 1975.Google Scholar
  7. 7.
    C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance, Branchand- price: Column generation for solving huge integer programs, Operations Research 46 (1998) 316–329.CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    M.S. Bazaraa and O. Kirca, A branch-and-bound based heuristic for solving the quadratic assignment problem, Naval Research Logistics Quarterly 30 (1983) 287–304.CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    R. Bertolo, P. Östergård, and W.D. Weakley, An updated table of binary/ternary mixed covering codes, Journal of Combinatorial Designs 12 (2004) 157–176.CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The User Language, Journal of Symbolic Computations 24 (1997) 235–265.CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    C.A. Brown, L. Finkelstein, and P.W. Purdom, Backtrack searching in the presence of symmetry, Lecture Notes in Computer Science 357, Springer, 1989, pp. 99–110.Google Scholar
  12. 12.
    C.A. Brown, L. Finkelstein, and P.W. Purdom, Backtrack Searching in the Presence of Symmetry, Nordic Journal of Computing 3 (1996) 203–219.MathSciNetGoogle Scholar
  13. 13.
    C. Buchheim and M. J¨unger, Detecting symmetries by branch&cut, Mathematical Programming 98 (2003) 369–384.CrossRefMathSciNetMATHGoogle Scholar
  14. 14.
    C. Buchheim and M. Jünger, Linear optimization over permutation groups, Discrete Optimization 2 (2005) 308–319.CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    D.A. Bulutoglu and F. Margot, Classification of orthogonal arrays by integer programming, Journal of Statistical Planning and Inference 138 (2008) 654–666. 682 Franc¸ois MargotCrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    G. Butler, Computing in permutation and matrix groups II: Backtrack algorithm, Mathematics of Computation 39 (1982) 671–680.CrossRefMathSciNetGoogle Scholar
  17. 17.
    G. Butler, Fundamental Algorithms for Permutation Groups, Lecture Notes in Computer Science 559, Springer, 1991.Google Scholar
  18. 18.
    G. Butler and J.J. Cannon, Computing in permutation and matrix groups I: Normal closure, commutator subgroups, series, Mathematics of Computation 39 (1982) 663–670.CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    G. Butler and W.H. Lam, A general backtrack algorithm for the isomorphism problem of combinatorial objects, Journal of Symbolic Computation 1 (1985) 363–381.CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    P.J. Cameron, Permutation Groups, London Mathematical Society, Student Text 45, Cambridge University Press,1999.CrossRefMATHGoogle Scholar
  21. 21.
    M. Campêlo and R.C. Corrêa, A Lagrangian decomposition for the maximum stable set problem, Working Paper (2008), Universidade Federal do Cear´a, Brazil.Google Scholar
  22. 22.
    M. Campêlo, V.A. Campos, and R.C. Corrêa, Um algoritmo de Planos-de-Corte para o núumero cromático fracionário de um grafo, Pesquisa Operational 29 (2009) 179–193.Google Scholar
  23. 23.
    M. Campêlo, R. Corrêa, and Y. Frota, Cliques, holes and the vertex coloring polytope, Information Processing Letters 89 (2004) 159–164.CrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    M. Campêlo, V. Campos, and R. Corrêa, On the asymmetric representatives formulation for the vertex coloring problem, Electronic Notes in Discrete Mathematics 19 (2005) 337–343.CrossRefGoogle Scholar
  25. 25.
    M. Campêlo, V. Campos, and R. Corrêa, On the asymmetric representatives formulation for the vertex coloring problem, Discrete Applied Mathematics 156 (2008) 1097–1111.CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    R.D. Cameron, C.J. Colbourn, R.C. Read, and N.C.Wormald, Cataloguing the graphs on 10 vertices, Journal of Graph Theory 9 (1985) 551–562.CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    T. Christof and G. Reinelt, Decomposition and parallelization techniques for enumerating the facets of combinatorial polytopes, International Journal on Computational Geometry and Applications 11 (2001) 423–437.CrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North Holland, 1997.Google Scholar
  29. 29.
    C.J. Colbourn and J.H. Dinitz (eds.): The CRC Handbook of Combinatorial Designs, CRC Press, 2007.Google Scholar
  30. 30.
    G. Cooperman, L. Finkelstein, and N. Sarawagi, A random base change algorithm for permutation groups, Proceedings of the International Symposium on Symbolic and Algebraic Computations – ISSAC 90, ACM Press, 1990, pp. 161–168.Google Scholar
  31. 31.
    J. Crawford, M.L. Ginsberg, E. Luks, and A. Roy, Symmetry-breaking predicates for search problems, KR’96: Principles of Knowledge Representation and Reasoning (L.C. Aiello, J. Doyle, and S. Shapiro, eds.), 1996, pp. 148–159.Google Scholar
  32. 32.
    P. Darga, M.H. Liffiton, K.A. Sakallah, and I.L. Markov, Exploiting structure in symmetry generation for CNF, Proceedings of the 41st Design Automation Conference, San Diego 2004, pp. 530–534.Google Scholar
  33. 33.
    Z. Degraeve, W. Gochet, and R. Jans, Alternative formulations for a layout problem in the fashion industry, European Journal of Operational Research 143 (2002) 80–93.CrossRefMATHGoogle Scholar
  34. 34.
    M. Desrochers and F. Soumis, A column generation approach to the urban transit crew scheduling problem, Transportation Science 23 (1989) 1–13.CrossRefMATHGoogle Scholar
  35. 35.
    A. Deza, K. Fukuda, T. Mizutani, and C. Vo, On the face lattice of the metric polytope, Discrete and Computational Geometry: Japanese Conference (Tokyo, 2002), Lecture Notes in Computer Science 2866, Springer, 2003, pp. 118–128.Google Scholar
  36. 36.
    A. Deza, K. Fukuda, D. Pasechnik, and M. Sato, On the skeleton of the metric polytope, Discrete and Computational Geometry: Japanese Conference (Tokyo, 2000), in Lecture Notes in Computer Science 2098, Springer, 2001, pp. 125–136.Google Scholar
  37. 37.
    Y. Dumas, M. Desrochers, and F. Soumis, The pickup and delivery problem with time windows, European Journal of Operations Research 54 (1991) 7–22.CrossRefMATHGoogle Scholar
  38. 38.
    M. Elf, C. Gutwenger, M. J¨unger, and G. Rinaldi, Branch-and-cut algorithms for combinatorial optimization and their implementation in ABACUS, in [59] (2001) 155–222.Google Scholar
  39. 39.
    T. Fahle, S. Shamberger, and M. Sellmann, Symmetry breaking, Proc. 7th International Conference on Principles and Practice of Constraint Programming – CP 2001, Lecture Notes in Computer Science 2239, Springer, 2001, pp. 93–107. 17 Symmetry in Integer Linear Programming 683Google Scholar
  40. 40.
    P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh, Symmetry in matrix models, working paper APES-30-2001, 2001.Google Scholar
  41. 41.
    P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh, Breaking row and column symmetries in matrix models, Proc. 8th International Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 462–476.Google Scholar
  42. 42.
    P. Flener, J. Pearson, M. Sellmann, P. van Hentenryck, and M. Ågren, Dynamic structural symmetry breaking for constraint satisfaction problems, DOI 10.1007/s10601-008-9059-7, Constraints 14 (2009).Google Scholar
  43. 43.
    F. Focacci andM.Milano, Global cut framework for removing symmetries, Proc. 7th International Conference on Principles and Practice of Constraint Programming – CP 2001, Lecture Notes in Computer Science 2239, Springer, 2001, pp. 77–92.Google Scholar
  44. 44.
    E.J. Friedman, Fundamental domains for integer programs with symmetries, Proceedings of COCOA 2007, Lecture Notes in Computer Science 4616, 2007, pp. 146–153.Google Scholar
  45. 45.
    I.P. Gent, W. Harvey, and T. Kelsey, Groups and constraints: Symmetry breaking during search, Proc. 8th International Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 415–430.Google Scholar
  46. 46.
    I.P. Gent, W. Harvey, T. Kelsey, and S. Linton, Generic SBDD using computational group theory, Proc. 9th International Conference on Principles and Practice of Constraint Programming – CP 2003, Lecture Notes in Computer Science 2833, Springer, 2003, pp. 333–347.Google Scholar
  47. 47.
    I.P. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B. Smith, Conditional symmetry breaking, Proc. 11th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science 3709, 2005, pp. 333–347.Google Scholar
  48. 48.
    I.P. Gent, T. Kelsey, S.T. Linton, J. Pearson, and C.M. Roney-Dougal, Groupoids and conditional symmetry, Proc. 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science 4741, 2007, pp. 823–830.Google Scholar
  49. 49.
    I.P. Gent, K.E. Petrie, and J.-F. Puget, Symmetry in constraint programming, Handbook of Constraint Programming (F. Rossi, P. van Beek, and T. Walsh eds.), Elsevier, 2006, pp. 329– 376.Google Scholar
  50. 50.
    I.P. Gent and B.M. Smith, Symmetry breaking in constraint programming, Proceedings of ECAI-2002, IOS Press, 2002, pp. 599–603.Google Scholar
  51. 51.
    D.M. Gordon and D.R. Stinson, Coverings, The CRC Handbook of Combinatorial Designs (C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, 2007, pp. 365–372.Google Scholar
  52. 52.
    L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985.Google Scholar
  53. 53.
    H. Hämäläinen, I. Honkala, S. Litsyn, and P. Östergård, Football pools–A game for mathematicians, American Mathematical Monthly 102 (1995) 579–588.Google Scholar
  54. 54.
    C.M. Hoffman, Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Science 136, Springer, 1982.Google Scholar
  55. 55.
    D.F. Holt, B. Eick, and E.A. O’Brien, Handbook of Computational Group Theory, Chapman & Hall/CRC, 2004.Google Scholar
  56. 56.
    R. Jans, Solving lotsizing problems on parallel identical machines using symmetry breaking constraints, INFORMS Journal on Computing 21 (2009) 123–136.Google Scholar
  57. 57.
    R. Jans and Z. Degraeve, A note on a symmetrical set covering problem: The lottery problem, European Journal of Operational Research 186 (2008) 104–110.Google Scholar
  58. 58.
    M. Jerrum, A compact representation for permutation groups, Journal of Algorithms 7 (1986) 60–78.CrossRefMathSciNetMATHGoogle Scholar
  59. 59.
    M. Jünger and D. Naddef (eds.), Computational Combinatorial Optimization, Lecture Notes in Computer Science 2241, Springer, 2001.MATHGoogle Scholar
  60. 60.
    V. Kaibel, M. Peinhardt, and M.E. Pfetsch, Orbitopal fixing, Proceedings of the 12th International Integer Programming and Combinatorial Optimization Conference (M. Fischetti and D.P.Williamson, eds.), Lecture Notes in Computer Science 4513, Springer, 2007, pp. 74–88.Google Scholar
  61. 61.
    V. Kaibel and M.E. Pfetsch, Packing and partitioning orbitopes,Mathematical Programming 114 (2008) 1–36.CrossRefMathSciNetMATHGoogle Scholar
  62. 62.
    D.L. Kreher and D.R. Stinson, Combinatorial Algorithms, Generation, Enumeration, and Search, CRC Press, 1999. 684 François MargotGoogle Scholar
  63. 63.
    E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, The Traveling Salesman Problem, Wiley, 1985.Google Scholar
  64. 64.
    J.S. Leon, On an algorithm for finding a base and a strong generating set for a group given by generating permutations, Mathematics of Computation 35 (1980) 941–974.CrossRefMathSciNetMATHGoogle Scholar
  65. 65.
    J.S. Leon, Computing automorphism groups of combinatorial objects, Computational Group Theory (M.D. Atkinson, ed.), Academic Press, 1984, pp. 321–335.Google Scholar
  66. 66.
    L. Liberti, Automatic generation of symmetry-breaking constraints, Proceedings of COCOA 2008, Lecture Notes in Computer Science 5165, 2008, pp. 328–338.CrossRefGoogle Scholar
  67. 67.
    J. Linderoth, F. Margot, and G. Thain, Improving bounds on the football pool problem via symmetry: Reduction and high-throughput computing, to appear in INFORMS Journal on Computing, 2009.Google Scholar
  68. 68.
    C. Luetolf and F. Margot, A catalog of minimally nonideal matrices, Mathematical Methods of Operations Research 47 (1998) 221–241.CrossRefMathSciNetMATHGoogle Scholar
  69. 69.
    E. Luks, Permutation groups and polynomial-time computation, Groups and Computation (L. Finkelstein and W. Kantor, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 11 (1993) 139–175.Google Scholar
  70. 70.
    J.L. Marenco and P.A. Rey, The football pool polytope, Electronic Notes in Discrete Mathematics 30 (2008) 75–80.CrossRefGoogle Scholar
  71. 71.
  72. 72.
    F. Margot, Pruning by isomorphism in branch-and-cut, Mathematical Programming 94 (2002) 71–90.CrossRefMathSciNetMATHGoogle Scholar
  73. 73.
    F.Margot, Small covering designs by branch-and-cut,Mathematical Programming 94 (2003) 207–220.CrossRefMathSciNetMATHGoogle Scholar
  74. 74.
    F. Margot, Exploiting orbits in symmetric ILP, Mathematical Programming 98 (2003) 3–21.CrossRefMathSciNetMATHGoogle Scholar
  75. 75.
    F. Margot, Symmetric ILP: Coloring and small integers, Discrete Optimization 4 (2007) 40– 62.CrossRefMathSciNetMATHGoogle Scholar
  76. 76.
    T. Mautor and C. Roucairol, A new exact algorithm for the solution of quadratic assignment problems, Discrete Applied Mathematics 55 (1994) 281–293.CrossRefMathSciNetMATHGoogle Scholar
  77. 77.
    B.D. McKay, Nauty User’s Guide (Version 2.2), Computer Science Department, Australian National University, Canberra.Google Scholar
  78. 78.
    B.D. McKay, Isomorph-free exhaustive generation, Journal of Algorithms 26 (1998) 306– 324.CrossRefMathSciNetMATHGoogle Scholar
  79. 79.
    A. Mehrotra and M.A. Trick, A column generation approach for graph coloring, INFORMS Journal on Computing 8 (1996) 344–354.CrossRefMATHGoogle Scholar
  80. 80.
    A. Mehrotra and M.A. Trick, Cliques and clustering: A combinatorial approach, Operations Research Letters 22 (1998) 1–12.CrossRefMathSciNetMATHGoogle Scholar
  81. 81.
    I. M´endez-D`ıaz and P. Zabala, A branch-and-cut algorithm for graph coloring, Discrete Applied Mathematics 154 (2006) 826–847.CrossRefMathSciNetGoogle Scholar
  82. 82.
    W.H. Mills and R.C. Mullin, Coverings and packings, Contemporary Design Theory: A Collection of Surveys (J.H. Dinitz and D.R. Stinson, eds.), Wiley, 1992, pp. 371–399.Google Scholar
  83. 83.
    G.L. Nemhauser and S. Park, A polyhedral approach to edge colouring, Operations Research Letters 10 (1991) 315–322.CrossRefMathSciNetMATHGoogle Scholar
  84. 84.
    G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1988.Google Scholar
  85. 85.
    P. Östergård and W. Blass, On the size of optimal binary codes of length 9 and covering radius 1, IEEE Transactions on Information Theory 47 (2001) 2556–2557.CrossRefMATHGoogle Scholar
  86. 86.
    P. Östergård and A. Wassermann, A new lower bound for the football pool problem for six matches, Journal of Combinatorial Theory Ser. A 99 (2002) 175–179.CrossRefMATHGoogle Scholar
  87. 87.
    J. Ostrowski, Personal communication, 2007.Google Scholar
  88. 88.
    J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio, Orbital branching, IPCO 2007: The Twelfth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 4513, Springer, 2007, pp. 104–118.Google Scholar
  89. 89.
    J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio, Constraint orbital branching, IPCO 2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 5035, Springer, 2008, pp. 225–239. 17 Symmetry in Integer Linear Programming 685Google Scholar
  90. 90.
    M.W. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large scale symmetric travelling salesman problems, SIAM Review 33 (1991) 60–100.CrossRefMathSciNetMATHGoogle Scholar
  91. 91.
    K.E. Petrie and B.M. Smith, Comparison of symmetry breaking methods in constraint programming, In Proceedings of SymCon05, 2005.Google Scholar
  92. 92.
    F. Plastria, Formulating logical implications in combinatorial optimisation, European Journal of Operational Research 140 (2002) 338–353.CrossRefMathSciNetMATHGoogle Scholar
  93. 93.
    J.-F. Puget, On the satisfiability of symmetrical constrainted satisfaction problems, Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems, Lecture Notes in Artificial Intelligence 689, Springer, 1993, pp. 350–361.Google Scholar
  94. 94.
    J.-F. Puget, Symmetry breaking using stabilizers, Proc. 9th International Conference on Principles and Practice of Constraint Programming – CP 2003, Lecture Notes in Computer Science 2833, Springer, 2003, pp. 585–599.Google Scholar
  95. 95.
    J.-F. Puget, Automatic detection of variable and value symmetries, Proc. 11th International Conference on Principles and Practice of Constraint Programming – CP 2005, Lecture Notes in Computer Science 3709, Springer, 2005, pp. 475–489.Google Scholar
  96. 96.
    J.-F. Puget, Symmetry breaking revisited, Constraints 10 (2005) 23–46.CrossRefMathSciNetMATHGoogle Scholar
  97. 97.
    J.-F. Puget, A comparison of SBDS and dynamic lex constraints, In Proceeding of SymCon06, 2006, pp. 56–60.Google Scholar
  98. 98.
    A. Ramani, F.A. Aloul, I.L.Markov, and K.A. Sakallah, Breaking instance-independent symmetries in exact graph coloring, Journal of Artificial Intelligence Research 26 (2006) 191– 224.CrossRefMathSciNetGoogle Scholar
  99. 99.
    A. Ramani and I.L.Markov, Automatically exploiting symmetries in constraint programming, CSCLP 2004 (B. Faltings et al., eds.), Lecture Notes in Artificial Intelligence 3419, Springer, 2005, pp. 98–112.Google Scholar
  100. 100.
    R.C. Read, Every one a winner or how to avoid isomorphism search when cataloguing combinatorial configurations, Annals of Discrete Mathematics 2 (1978) 107–120.CrossRefMathSciNetMATHGoogle Scholar
  101. 101.
    P.A. Rey, Eliminating redundant solutions of some symmetric combinatorial integer programs, Electronic Notes in Discrete Mathematics 18 (2004) 201–206.CrossRefMathSciNetGoogle Scholar
  102. 102.
    J.J. Rotman, An Introduction to the Theory of Groups, 4th edition, Springer, 1994.Google Scholar
  103. 103.
    D. Salvagnin, A Dominance Procedure for Integer Programming, Master’s thesis, University of Padova, 2005.Google Scholar
  104. 104.
    E. Seah and D.R. Stinson, An enumeration of non-isomorphic one-factorizations and Howell designs for the graph K 10 minus a one-factor, Ars Combinatorica 21 (1986) 145–161.MathSciNetMATHGoogle Scholar
  105. 105.
    Á. Seress, Nearly linear time algorithms for permutation groups: An interplay between theory and practice, Acta Applicandae Mathematicae 52 (1998) 183–207.CrossRefMathSciNetMATHGoogle Scholar
  106. 106.
    Á. Seress, Permutation Group Algorithms, Cambridge Tracts in Mathematics 152, Cambridge University Press, 2003.Google Scholar
  107. 107.
    H.D. Sherali, B.M.P. Fraticelli, and R.D. Meller, Enhanced model formulations for optimal facility layout, Operations Research 51 (2003) 629–644.CrossRefMathSciNetMATHGoogle Scholar
  108. 108.
    H.D. Sherali and J.C. Smith, Improving discrete model representations via symmetry considerations, Management Science 47 (2001) 1396–1407.CrossRefGoogle Scholar
  109. 109.
    H.D. Sherali, J.C. Smith, and Y. Lee, Enhanced model representations for an intra-ring synchronous optical network design problem allowing demand splitting, INFORMS Journal on Computing 12 (2000) 284–298.CrossRefGoogle Scholar
  110. 110.
    B. Smith, Reducing symmetry in a combinatorial design problem, Proc. 8th International Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 207–213.Google Scholar
  111. 111.
    B.M. Smith, S.C. Brailsford, P.M. Hubbard, and H.P. Williams, The progressive party problem: Integer linear programming and constraint programming compared, Constraints 1 (1996) 119–138.CrossRefMathSciNetGoogle Scholar
  112. 112.
    R.G. Stanton and J.A. Bates, A computer search for B-coverings, in Combinatorial Mathematics VII (R.W. Robinson, G.W. Southern, and W.D. Wallis, eds.), Lecture Notes in Computer Science 829, Springer, 1980, pp. 37–50.Google Scholar
  113. 113.
    The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007), http://www.gap-system.org. 686 Franc¸ois Margot
  114. 114.
    P.H. Vance, Branch-and-price algorithms for the one-dimensional cutting stock problem, Computational Optimization and Applications 9 (1998) 111–228.CrossRefMathSciNetGoogle Scholar
  115. 115.
    P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser, Solving binary cutting stock problems by column generation and branch-and-bound, Computational Optimization and Applications 3 (1994) 111–130.CrossRefMathSciNetMATHGoogle Scholar
  116. 116.
    P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser, Airline crew scheduling: A new formulation and decomposition algorithm, Operations Research 45 (1997) 188–200.CrossRefMATHGoogle Scholar
  117. 117.
    L.A. Wolsey, Integer Programming, Wiley, 1998.Google Scholar
  118. 118.
    M. Yannakakis, Expressing combinatorial optimization problems by linear programs, Journal of Computer and System Sciences 43 (1991) 441–466.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Tepper School of Business, Carnegie Mellon UniversityPittsburghUSA

Personalised recommendations