Mixed Integer Programming Computation

  • Andrea Lodi


The first 50 years of Integer and Mixed-Integer Programming have taken us to a very stable paradigm for solving problems in a reliable and effective way. We run over these 50 exciting years by showing some crucial milestones and we highlight the building blocks that are making nowadays solvers effective from both a performance and an application viewpoint. Finally, we show that a lot of work must still be done for improving the solvers and extending their modeling capability.


Mixed Integer Travel Salesman Problem Linear Programming Relaxation Mixed Integer Programming Problem Clique Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Aardal, R.E. Bixby, C.A.J. Hurkens A.K. Lenstra, and J.W. Smeltink, Market split and basisreduction: Towards a solution of the Cornuéjols-Dawande instances, INFORMS Journal on Computing 12 (2000) 192–202.CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    K. Aardal, C.A.J. Hurkens, and A.K. Lenstra, Solving a system of diophantine equations withlower and upper bounds on the variables, Mathematics of Operations Research 25 (2000) 427–442.CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    K. Aardal and A.K. Lenstra, Hard equality constrained integer knapsacks, Mathematics of Operations Research 29 (2004) 724–738.CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    K. Abhishek, S. Leyffer, and J.T. Linderoth, FilMINT: An outer-approximation-based solverfor nonlinear mixed integer programs, Preprint ANL/MCS-P1374-0906, Mathematics and Computer Science Division, Argonne National Lab, 2006.Google Scholar
  5. 5.
    T. Achterberg, Conflict analysis in mixed integer programming, Discrete Optimization 4 (2007) 4–20.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Achterberg, Constraint integer programming, Ph.D. thesis, ZIB, Berlin, 2007.Google Scholar
  7. 7.
    T. Achterberg and T. Berthold, Improving the feasibility pump, Discrete Optimization 4 (2007) 77–86.CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    T. Achterberg and R.E. Bixby, Personal communication, 2008.Google Scholar
  9. 9.
    T. Achterberg, R. Brinkmann, and M. Wedler, Property checking with constraint integer programming, Tech. Report 07-37, ZIB, Berlin, 2007.Google Scholar
  10. 10.
    T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Operations Research Letters 33 (2005) 42–54.CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    T. Achterberg, T. Koch, and A. Martin, MIPLIB 2003, Operations Research Letters 34 (2006) 361–372, see
  12. 12.
    E. Amaldi, M.E. Pfetsch, and L.E. Trotter Jr., On the maximum feasible subsystem problem,IISs, and IIS-hypergraphs, Mathematical Programming 95 (2003) 533–554.CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    K. Andersen, G. Cornuéjols, and Y. Li, Reduce-and-split cuts: Improving the performance ofmixed integer Gomory cuts, Management Science 51 (2005) 1720–1732.CrossRefGoogle Scholar
  14. 14.
    K. Andersen, Q. Louveaux, R. Weismantel, and L.A. Wolsey, Inequalities from two rows of asimplex tableau, Integer Programming and Combinatorial Optimization IPCO 2007 (M. Fischetti and D.P. Williamson, eds.), Lecture Notes in Computer Science 4513, Springer-Verlag, 2007, pp. 1–15.Google Scholar
  15. 15.
    G. Andreello, A. Caprara, and M. Fischetti, Embedding cuts in a branch and cut framework: acomputational study with \(\{ 0,\frac{1}{2}\}\) -cuts, INFORMS Journal on Computing 19 (2007) 229–238.Google Scholar
  16. 16.
    D. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The traveling salesman problem. Acomputational study, Princeton University Press, 2007.Google Scholar
  17. 17.
    E. Balas, Facets of the knapsack polytope, Mathematical Programming 8 (1975) 146–164.CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    E. Balas, Disjunctive programming, Annals of Discrete Mathematics 5 (1979) 3–51.CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    E. Balas, S. Ceria, and G. Cornuéjols, Mixed 0-1 programming by lift-and-project in a branchand-cut framework, Management Science 42 (1996) 1229–1246.CrossRefzbMATHGoogle Scholar
  20. 20.
    E. Balas, S. Ceria, G. Cornuéjols, and N. Natraj, Gomory cuts revisited, Operations Research Letters 19 (1996) 1–9.CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    E. Balas and A. Saxena, Optimizing over the split closure, Mathematical Programming 113 (2008) 219–240.CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    M. Baz, J.P. Brooks, A. Gosavi, and B. Hunsaker, Automated tuning of optimization software parameters, Tech. Report 2007-7, University of Pittsburgh, 2007.Google Scholar
  23. 23.
    E.M.L. Beale and J.A. Tomlin, Special facilities in a general mathematical programming systemfor non-convex problems using ordered sets of variables, OR 69. Proceedings of the Fifth International Conference on Operational Research (J. Lawrence, ed.), Tavistock Publications, 1970, pp. 447–454.Google Scholar
  24. 24.
    M. Benichou, J.M. Gauthier, P. Girodet, and G. Hentges, Experiments in mixed-integer programming, Mathematical Programming 1 (1971) 76–94.CrossRefMathSciNetzbMATHGoogle Scholar
  25. 25.
    L. Bertacco, Exact and heuristic methods for mixed integer linear programs, Ph.D. thesis, Università degli Studi di Padova, 2006.Google Scholar
  26. 26.
    L. Bertacco, M. Fischetti, and A. Lodi, A feasibility pump heuristic for general mixed-integerproblems, Discrete Optimization 4 (2007) 63–76.CrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    R.E. Bixby, M. Fenelon, Z. Gu, E. Rothberg, and R. Wunderling, Mixed-integer programming:A progress report, The Sharpest Cut: The Impact of Manfred Padberg and his Work (M. Grötschel, ed.), MPS-SIAM Series on Optimization, 2004, pp. 309–325.Google Scholar
  28. 28.
    P. Bonami, L.T. Biegler, A.R. Conn, G. Cornuéjols, I.E. Grossmann, C.D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A.Wächter, An algorithmic framework for convex mixedinteger nonlinear programs, Discrete Optimization 5 (2008) 186–204.CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    P. Bonami, G. Cornuéjols, A. Lodi, and F. Margot, A feasibility pump for mixed integer nonlinear programs, Mathematical Programming 119 (2009) 331–352.CrossRefMathSciNetzbMATHGoogle Scholar
  30. 30.
    C. Bragalli, C. D’Ambrosio, J. Lee, A. Lodi, and P. Toth, Water network design by MINLP, Tech. Report RC24495, IBM, 2008.Google Scholar
  31. 31.
    A. Caprara and M. Fischetti, \(\{ 0,\frac{1}{2}\}\) Chvátal-Gomory cuts, Mathematical Programming 74 (1996) 221–235.MathSciNetGoogle Scholar
  32. 32.
  33. 33.
    J.W. Chinneck, Fast heuristics for the maximum feasible subsystem problem, INFORMS Journal on Computing 13 (2001) 210–223.CrossRefGoogle Scholar
  34. 34.
    V. Chvátal, Edmonds polytopes and a hierarchy of combinatorial problems, Discrete Mathematics 4 (1973) 305–337.CrossRefMathSciNetzbMATHGoogle Scholar
  35. 35.
    V. Chvátal, Resolution search, Discrete Applied Mathematics 73 (1997) 81–99.CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    W.J. Cook, S. Dash, R. Fukasawa, and M. Goycoolea, Numerically accurate Gomory mixed integercuts, Tech. report, School of Industrial and Systems Engineering, Georgia Tech, 2007,
  37. 37.
    W.J. Cook, R. Kannan, and A. Schrijver, Chvátal closures for mixed integer programming problems, Mathematical Programming 47 (1990) 155–174.CrossRefMathSciNetzbMATHGoogle Scholar
  38. 38.
    G. Cornuéjols, Valid inequalities for mixed integer linear programs, Mathematical Programming 112 (2008) 3–44.CrossRefMathSciNetzbMATHGoogle Scholar
  39. 39.
    G. Cornuéjols and M. Dawande, A class of hard small 0-1 programs, INFORMS Journal on Computing 11 (1999) 205–210.CrossRefMathSciNetzbMATHGoogle Scholar
  40. 40.
    G. Cornuéjols, L. Liberti, and G. Nannicini, Improved strategies for branching on general disjunctions, Tech. report, LIX, École Polytechnique, Optimization Online, paper 2071, 2008.Google Scholar
  41. 41.
    G. Cornuéjols and F. Margot, On the facets of mixed integer programs with two integer variables and two constraints, Mathematical Programming 120 (2009) 429–456.CrossRefMathSciNetzbMATHGoogle Scholar
  42. 42.
    H. Crowder, E. Johnson, and M.W. Padberg, Solving large scale zero-one linear programming problem, Operations Research 31 (1983) 803–834.CrossRefzbMATHGoogle Scholar
  43. 43.
    E. Danna, Performance variability in mixed integer programming, Workshop on Mixed Integer Programming, Columbia University, New York, 2008, see
  44. 44.
    E. Danna, M. Fenelon, Z. Gu, and R.Wunderling, Generating multiple solutions for mixedinteger programming problems, Integer Programming and Combinatorial Optimization IPCO 2007 (M. Fischetti and D.P. Williamson, eds.), Lecture Notes in Computer Science 4513, Springer-Verlag, 2007, pp. 280–294.Google Scholar
  45. 45.
    E. Danna, E. Rothberg, and C. Le Pape, Exploiting relaxation induced neighborhoods to improve MIP solutions, Mathematical Programming 102 (2005) 71–90.CrossRefMathSciNetzbMATHGoogle Scholar
  46. 46.
    S. Dash, O. Günlük, and A. Lodi, MIR closures of polyhedral sets, Mathematical Programming 121 (2010) 33–60.CrossRefMathSciNetzbMATHGoogle Scholar
  47. 47.
    S. Dey and L.A. Wolsey, Lifting integer variables in minimal inequalities correspondingto lattice-free triangles, Integer Programming and Combinatorial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science, 5035, Springer-Verlag, 2008, pp. 463–475.Google Scholar
  48. 48.
    D.G. Espinoza, Computing with multi-row gomory cuts, Integer Programming and Combinatorial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science 5035, Springer-Verlag, 2008, pp. 214–224.Google Scholar
  49. 49.
    M. Fischetti, F. Glover, and A. Lodi, The feasibility pump, Mathematical Programming 104 (2005) 91–104.CrossRefMathSciNetzbMATHGoogle Scholar
  50. 50.
    M. Fischetti and A. Lodi, Local branching, Mathematical Programming 98 (2002) 23–47.CrossRefMathSciNetGoogle Scholar
  51. 51.
    M. Fischetti and A. Lodi, Optimizing over the first Chvátal closure, Mathematical Programming 110 (2007) 3–20.CrossRefMathSciNetzbMATHGoogle Scholar
  52. 52.
    M. Fischetti, A. Lodi, and D. Salvagnin, Just MIP it!, MATHEURISTICS: Hybridizing metaheuristics and mathematical programming (V. Maniezzo, T. Stützle, and S. Voss, eds.), Operations Research/Computer Science Interfaces Series, Springer, 2009.Google Scholar
  53. 53.
    M. Fischetti, A. Lodi, and A. Tramontani, On the separation of disjunctive cuts, Mathematical Programming, DOI 10.1007/s10107-009-0300-y, 2010.Google Scholar
  54. 54.
    F.W. Glover and G.A. Kochenberger (eds.), Handbook of metaheuristics, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.zbMATHGoogle Scholar
  55. 55.
    R.E. Gomory, Outline of an algorithm for integer solutions to linear programs, Bulletin of the American Mathematical Society 64 (1958) 275–278.CrossRefMathSciNetzbMATHGoogle Scholar
  56. 56.
    R.E. Gomory, An algorithm for the mixed integer problem, Tech. Report RM-2597, The Rand Corporation, 1960.Google Scholar
  57. 57.
    M. Grötschel, M. Jünger, and G. Reinelt, A cutting plane algorithm for the linear orderingproblem, Operations Research 32 (1984) 1195–1220.CrossRefMathSciNetzbMATHGoogle Scholar
  58. 58.
    Z. Gu, G.L. Nemhauser, and M.W.P. Savelsbergh, Mixed flow covers for mixed 0-1 integerprograms, Mathematical Programming 85 (1999) 439–467.CrossRefMathSciNetzbMATHGoogle Scholar
  59. 59.
    J.N. Hooker, Needed: An empirical science of algorithms, Operations Research 42 (1994) 201–212.CrossRefzbMATHGoogle Scholar
  60. 60.
    M. Jörg, k-disjunctive cuts and cutting plane algorithms for general mixed integer linear programs, Ph.D. thesis, Technische Universität München, 2008.Google Scholar
  61. 61.
    E.L. Johnson and M.W. Padberg, Degree-two inequalities, clique facets and biperfect graphs, Annals of Discrete Mathematics 16 (1982) 169–187.MathSciNetzbMATHGoogle Scholar
  62. 62.
    M. Karamanov and G. Cornuéjols, Branching on general disjunctions, Tech. report, Tepper School of Business, Carnegie Mellon University, 2005, revised 2008.Google Scholar
  63. 63.
    A.H. Land and A.G. Doig, An automatic method of solving discrete programming problems, Econometrica 28 (1960) 497–520.CrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    J.T. Linderoth and M.W.P. Savelsbergh, A computational study of search strategies for mixedinteger programming, INFORMS Journal on Computing 11 (1999) 173–187.CrossRefMathSciNetzbMATHGoogle Scholar
  65. 65.
    Q. Louveaux and L.A. Wolsey, Lifting, superadditivity, mixed integer rounding and singlenode flow sets revisited, 4OR 1 (2003) 173–207.MathSciNetzbMATHGoogle Scholar
  66. 66.
    A. Mahajan and T.K. Ralphs, Experiments with branching using general disjunctions, Tech. Report COR@L Lab, Lehigh University, 2008.Google Scholar
  67. 67.
    H. Marchand, A polyhedral study of the mixed knapsack set and its use to solve mixed integerprograms, Ph.D. thesis, Université Catholique de Louvain, 1998.Google Scholar
  68. 68.
    F. Margot, Testing cut generators for mixed-integer linear programming, Tech. Report E-43, Tepper School of Business, Carnegie Mellon University, 2007.Google Scholar
  69. 69.
    C.C. McGeogh, Experimental analysis of algorithms, Notices of the American Mathematical Association 48 (2001) 304–311.Google Scholar
  70. 70.
  71. 71.
    G.L. Nemhauser and L.A. Wolsey, Integer and combinatorial optimization, Wiley-Interscience, New York, 1988.zbMATHGoogle Scholar
  72. 72.
    G.L. Nemhauser and L.A. Wolsey, A recursive procedure to generate all cuts for 0-1 mixedinteger programs, Mathematical Programming 46 (1990) 379–390.CrossRefMathSciNetzbMATHGoogle Scholar
  73. 73.
    J. Ostrowsky, J. Linderoth, F. Rossi, and S. Smriglio, Constraint orbital branching, Integer Programming and Combinatorial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science 5035, Springer-Verlag, 2008, pp. 225–239.Google Scholar
  74. 74.
    J. Owen and S. Mehrotra, Experimental results on using general disjunctions in branch-and bound for general-integer linear program, Computational Optimization and Applications 20 (2001) 159–170.CrossRefMathSciNetzbMATHGoogle Scholar
  75. 75.
    M.W. Padberg, A note on 0-1 programming, Operations Research 23 (1975) 833–837.CrossRefMathSciNetzbMATHGoogle Scholar
  76. 76.
    M.W. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman problemby branch and cut, Operations Research Letters 6 (1987) 1–7.CrossRefMathSciNetzbMATHGoogle Scholar
  77. 77.
    M.W. Padberg and G. Rinaldi, A branch and cut algorithm for the resolution of large-scale symmetric traveling salesmen problems, SIAM Review 33 (1991) 60–100.CrossRefMathSciNetzbMATHGoogle Scholar
  78. 78.
    M.W. Padberg, T.J. Van Roy, and L.A. Wolsey, Valid inequalities for fixed charge problems, Operations Research 33 (1985) 842–861.CrossRefMathSciNetzbMATHGoogle Scholar
  79. 79.
    C.H. Papadimitriou and K. Steiglitz, Combinatorial optimization: Algorithms and complexity, Prentice-Hall, 1982.Google Scholar
  80. 80.
    W. Rei, J.-F. Cordeau, M. Gendreau, and P. Soriano, Accelerating Benders decomposition bylocal branching, Tech. Report C7PQMR PO2006-02-X, C.R.T., Montréal, 2006.Google Scholar
  81. 81.
    E. Rothberg, Personal communication, 2007.Google Scholar
  82. 82.
    E. Rothberg, An evolutionary algorithm for polishing mixed integer programming solutions, INFORMS Journal on Computing 19 (2007) 534–541.CrossRefGoogle Scholar
  83. 83.
    J.J. Salazar González, Difficult tiny MIPs arising from an application in commutative algebra, Poster presentation, MIP, Berkeley, 2009.Google Scholar
  84. 84.
    D. Salvagnin, A dominance procedure for integer programming, Master’s thesis, University of Padova, October 2005.Google Scholar
  85. 85.
    M.P.W. Savelsbergh, Preprocessing and probing techniques for mixed integer programming problems, ORSA Journal on Computing 6 (1994) 445–454.MathSciNetzbMATHGoogle Scholar
  86. 86.
    R.M. Stallman and G.J. Sussman, Forward reasoning and dependency directed backtracking in a system for computer-aided circuit analysis, Artificial Intelligence 9 (1977) 135–196.CrossRefzbMATHGoogle Scholar
  87. 87.
    T.J. Van Roy and L.A.Wolsey, Solving mixed integer programming problems using automaticre formulation, Operations Research 35 (1987) 45–57.CrossRefMathSciNetzbMATHGoogle Scholar
  88. 88.
    L.A. Wolsey, Facets for a linear inequality in 0-1 variables, Mathematical Programming 8 (1975) 165–178.CrossRefMathSciNetzbMATHGoogle Scholar
  89. 89.
    L.A.Wolsey, Strong formulations for mixed integer programs: Valid inequalities and extended formulations, Mathematical Programming 97 (2003) 423–447.MathSciNetzbMATHGoogle Scholar
  90. 90.
    L.A. Wolsey, Personal communication, 2005.Google Scholar
  91. 91.
    A. Zanette, M. Fischetti, and E. Balas, Can pure cutting plane algorithms work?, Integer Programming and Combinatorial Optimization IPCO 2008 (A. Lodi, A. Panconesi, and G. Rinaldi, eds.), Lecture Notes in Computer Science 5035, Springer-Verlag, 2008, pp. 416–434.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.DEIS, University of BolognaBolognaItaly

Personalised recommendations