Alternating-Time Stream Logic for Multi-agent Systems

  • Sascha Klüppelholz
  • Christel Baier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5052)


Constraint automata have been introduced to provide a compositional, operational semantics for the exogenous coordination language Reo, but they can also serve interface specification for components and an operational model for other coordination languages. Constraint automata have been used as basis for equivalence checking and model checking temporal logical properties. The main contribution of this paper is to reason about the local view and interaction and cooperation facilities of individual components or coalitions of components by means of a multi-player semantics for constraint automata. We introduce a temporal logic framework that combines classical features of alternating-time logic (\({\it ATL}\)) for concurrent games with special operators to specify the observable data flow at the I/O-ports of components. Since constraint automata support any kind of synchronous and asynchronous peer-to-peer communication, the resulting game structure is non-standard and requires a series of nontrivial adaptations of the \({\it ATL}\) model checking algorithm.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. Journal of the ACM 49, 672–713 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14(3), 329–366 (2004)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.J.M.M.: Models and temporal logics for timed component connectors. In: Proc. of SEFM, pp. 198–207. IEEE CS Press, Los Alamitos (2004)Google Scholar
  4. 4.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.J.M.M., Sirjani, M.: Synthesis of Reo circuits for implementation of component connector automata specifications. In: Jacquet, J.-M., Picco, G.P. (eds.) COORDINATION 2005. LNCS, vol. 3454, Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Azhar, S., Peterson, G.L., Reif, J.H.: On multiplayer non-cooperative games of incomplete information: Part 1&2. Technical report, Durham, NC, USA (1991)Google Scholar
  6. 6.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.J.M.M.: Modeling component connectors in Reo by constraint automata. In: Science of Computer Programming 61, pp. 75–113 (2006)Google Scholar
  7. 7.
    Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Algorithms for omega-regular games with imperfect information. CoRR, abs/0706.2619 (2007)Google Scholar
  8. 8.
    Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state concurrent systems using temporal logic specifications. ACM TOPLAS 8(2), 244–263 (1986)MATHCrossRefGoogle Scholar
  9. 9.
    de Alfaro, L., Henzinger, T.A.: Concurrent omega-regular games. In: Proc. of LICS, pp. 141–154 (January 2000)Google Scholar
  10. 10.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: FSE Proc., pp. 109–120. ACM Press, New York (2001)Google Scholar
  11. 11.
    de Wulf, M., Doyen, L., Raskin, J.-F.: A lattice theory for solving games of imperfect information. In: Hespanha, J.P., Tiwari, A. (eds.) HSCC 2006. LNCS, vol. 3927, pp. 153–168. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Fischer, M.J., Ladner, R.J.: Propositional dynamic logic of regular programs. Journal of Computer and System Science 8, 194–211 (1979)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fitoussi, D., Tennenholtz, M.: Choosing social laws for multi-agent systems: minimality and simplicity. Artif. Intell. 119(1-2), 61–101 (2000)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Francez, N.: Fairness. Springer, Heidelberg (1986)MATHGoogle Scholar
  15. 15.
    Grosu, R., Rumpe, B.: Concurrent timed port automata. Technical Report TUM-I9533, Techn. Univ. München (1995),
  16. 16.
    Hoek, W.v.d., Roberts, M., Wooldridge, M.: Knowledge and social laws. In: AAMAS, pp. 674–681 (2005)Google Scholar
  17. 17.
    Hoek, W.v.d., Wooldridge, M.: Cooperation, knowledge, and time: Alternating-time temporal epistemic logic and its applications. Studia Logica 75(1), 125–157 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Klüppelholz, S., Baier, C.: Symbolic model checking for channel-based component connectors. In: Proc. of FOCLASA 2006. ENTCS, vol. 175(2), pp. 19–37 (2007)Google Scholar
  19. 19.
    Klüppelholz, S., Baier, C.: Alternating-Time Stream Logic for Multi-Agent Systems. Technical report, Technical University Dresden (2008),
  20. 20.
    Lynch, N., Tuttle, M.R.: An introduction to input/output automata. CWI Quarterly 2(3), 219–246 (1989)MATHMathSciNetGoogle Scholar
  21. 21.
    Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2), 274–301 (1984)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Schobbens, P.Y.: Alternating-time logic with imperfect recall. In: Proc. of LCMAS. ENTCS, vol. 85(2), pp. 1–12 (2004)Google Scholar
  23. 23.
    Wolper, P.: Specification and synthesis of communicating processes using an extended temporal logic. In: Proc. of POPL, pp. 20–33 (1982)Google Scholar
  24. 24.
    Wooldridge, M.: Social laws in alternating time. In: Lomuscio, A., Nute, D. (eds.) DEON 2004. LNCS (LNAI), vol. 3065, p. 2. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sascha Klüppelholz
    • 1
  • Christel Baier
    • 1
  1. 1.Institut für Theoretische InformatikTechnische Universität DresdenGermany

Personalised recommendations