Advertisement

Precise Interval Analysis vs. Parity Games

  • Thomas Gawlitza
  • Helmut Seidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5014)

Abstract

In [8], a practical algorithm for precise interval analysis is provided for which, however, no non-trivial upper complexity bound is known. Here, we present a lower bound by showing that precise interval analysis is at least as hard as computing the sets of winning positions in parity games. Our lower-bound proof relies on an encoding of parity games into systems of particular integer equations. Moreover, we present a simplification of the algorithm for integer systems from [8]. For the given encoding of parity games, the new algorithm provides another algorithm for parity games which is almost as efficient as the discrete strategy improvement algorithm by Vöge and Jurdziński [17].

Keywords

Interval Analysis Strategy Iteration Variable Assignment Great Solution Simple Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bordeaux, L., Hamadi, Y., Vardi, M.Y.: An Analysis of Slow Convergence in Interval Propagation. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 790–797. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Costan, A., Gaubert, S., Goubault, E., Martel, M., Putot, S.: A Policy Iteration Algorithm for Computing Fixed Points in Static Analysis of Programs. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 462–475. Springer, Heidelberg (2005)Google Scholar
  3. 3.
    Cousot, P., Cousot, R.: Static Determination of Dynamic Properties of Programs. In: Second Int. Symp. on Programming, pp. 106–130. Dunod, Paris, France (1976)Google Scholar
  4. 4.
    Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. In: Proceedings of 4th ACM Symposium on Principles of Programming Languages (POPL), pp. 238–252. ACM Press, New York (1977)CrossRefGoogle Scholar
  5. 5.
    Cousot, P., Cousot, R.: Systematic Design of Program Analysis Frameworks. In: 6th ACM Symp. on Principles of Programming Languages (POPL), pp. 238–352 (1979)Google Scholar
  6. 6.
    Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended abstract). In: FOCS, pp. 368–377. IEEE, Los Alamitos (1991)Google Scholar
  7. 7.
    Gawlitza, T., Reineke, J., Seidl, H., Wilhelm, R.: Polynomial Exact Interval Analysis Revisited. Technical report, TU München (2006)Google Scholar
  8. 8.
    Gawlitza, T., Seidl, H.: Precise Fixpoint Computation Through Strategy Iteration. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 300–315. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Gawlitza, T., Seidl, H.: Precise Relational Invariants Through Strategy Iteration. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 23–40. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Jurdziński, M.: Deciding the winner in parity games is in UP ∩ co-UP. Inf. Process. Lett. 68(3), 119–124 (1998)CrossRefGoogle Scholar
  11. 11.
    Jurdziński, M., Paterson, M., Zwick, U.: A Deterministic Subexponential Algorithm for Solving Parity Games. In: 17th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 117–123 (2006)Google Scholar
  12. 12.
    Karr, M.: Affine Relationships Among Variables of a Program. Acta Informatica 6, 133–151 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Leroux, J., Sutre, G.: Accelerated Data-Flow Analysis. In: Riis Nielson, H., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 184–199. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    Puri, A.: Theory of Hybrid and Discrete Systems. PhD thesis, University of California, Berkeley (1995)Google Scholar
  15. 15.
    Su, Z., Wagner, D.: A class of polynomially solvable range constraints for interval analysis without widenings and narrowings. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 280–295. Springer, Heidelberg (2004)Google Scholar
  16. 16.
    Vöge, J.: Strategiesynthese für Paritätsspiele auf endlichen Graphen. PhD thesis, RWTH Aachen (2000)Google Scholar
  17. 17.
    Vöge, J., Jurdziński, M.: A Discrete Strategy Improvement Algorithm for Solving Parity Games. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 202–215. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Thomas Gawlitza
    • 1
  • Helmut Seidl
    • 1
  1. 1.Institut für Informatik, I2TU MünchenMünchenGermany

Personalised recommendations