Automated Verification of Dense-Time MTL Specifications Via Discrete-Time Approximation

  • Carlo A. Furia
  • Matteo Pradella
  • Matteo Rossi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5014)

Abstract

This paper presents a verification technique for dense-time MTL based on discretization. The technique reduces the validity problem of MTL formulas from dense to discrete time, through the notion of sampling invariance, introduced in previous work [13]. Since the reduction is from an undecidable problem to a decidable one, the technique is necessarily incomplete, so it fails to provide conclusive answers for some formulas. The paper discusses this shortcoming and hints at how it can be mitigated in practice. The verification technique has been implemented on top of the ℤot tool [19] for discrete-time bounded validity checking; the paper also reports on in-the-small experiments with the tool, which show some results that are promising in terms of performance.

Keywords

real-time metric temporal logic discretization dense time verification techniques sampling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abadi, M., Lamport, L.: An old-fashioned recipe for real-time. ACM TOPLAS 16(5), 1543–1571 (1994)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Henzinger, T.A.: Real-time logics: Complexity and expressiveness. Information and Computation 104(1), 35–77 (1993)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Biere, A., Heljanko, K., Junttila, T., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model checking. Logical Methods in Comp. Sci. 2(5:5), 1–64 (2006)MathSciNetGoogle Scholar
  4. 4.
    Chakravorty, G., Pandya, P.K.: Digiziting interval duration logic. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 167–179. Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Ciapessoni, E., Coen-Porisini, A., Crivelli, E., Mandrioli, D., Mirandola, P., Morzenti, A.: From formal models to formally-based methods: an industrial experience. ACM TOSEM 8(1), 79–113 (1999)CrossRefGoogle Scholar
  6. 6.
    Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  7. 7.
    de Alfaro, L., Manna, Z.: Verification in continuous time by discrete reasoning. In: AMAST 1995. LNCS, vol. 936, pp. 292–306 (1995)Google Scholar
  8. 8.
    D. D’Souza, R. Mohan M., and P. Prabhakar. Eliminating past operators in metric temporal logic. Technical Report IISc-CSA-TR-2006-11 (2006)Google Scholar
  9. 9.
    Fainekos, G.E., Pappas, G.J.: Robust Sampling for MITL Specifications. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 147–162. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Furia, C.A.: Scaling up the formal analysis of real-time systems. PhD thesis, DEI, Politecnico di Milano (May 2007)Google Scholar
  11. 11.
    Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling time in computing: A taxonomy and a comparative survey. Technical Report 2007.22, DEI, Politecnico di Milano (2007)Google Scholar
  12. 12.
    Furia, C.A., Pradella, M., Rossi, M.: Dense-time MTL verification through sampling. Technical Report 2007.37, DEI, Politecnico di Milano (April 2007)Google Scholar
  13. 13.
    Furia, C.A., Rossi, M.: Integrating Discrete- and Continuous-Time Metric Temporal Logics Through Sampling. In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 215–229. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Furia, C.A., Rossi, M.: On the expressiveness of MTL variants over dense time. In: Raskin, J.-F., Thiagarajan, P.S. (eds.) FORMATS 2007. LNCS, vol. 4763, pp. 163–178. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Henzinger, T.A.: It’s about time: Real-time logics reviewed. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 439–454. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992)Google Scholar
  17. 17.
    Hirshfeld, Y., Rabinovich, A.M.: Logics for real time: Decidability and complexity. Fundamenta Informaticae 62(1), 1–28 (2004)MATHMathSciNetGoogle Scholar
  18. 18.
    Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems 2(4), 255–299 (1990)CrossRefGoogle Scholar
  19. 19.
    Pradella, M.: Zot (March 2007), http://home.dei.polimi.it/pradella
  20. 20.
    Pradella, M., Morzenti, A., San Pietro, P.: The symmetry of the past and of the future. In: Proc. of ESEC/FSE 2007 (2007)Google Scholar
  21. 21.
    Sharma, B., Pandya, P.K., Chakraborty, S.: Bounded validity checking of interval duration logic. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 301–316. Springer, Heidelberg (2005)Google Scholar
  22. 22.
    Wilke, T.: Specifying timed state sequences in powerful decidable logics and timed automata. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994 and ProCoS 1994. LNCS, vol. 863, pp. 694–715. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carlo A. Furia
    • 1
  • Matteo Pradella
    • 2
  • Matteo Rossi
    • 1
  1. 1.Dipartimento di Elettronica e InformazionePolitecnico di MilanoItaly
  2. 2.CNR IEIIT-MIMilanoItaly

Personalised recommendations