Enhancing Workflow with a Semantic Description of Scientific Intent

  • Edoardo Pignotti
  • Peter Edwards
  • Alun Preece
  • Nick Gotts
  • Gary Polhill
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5021)


In the e-Science context, workflow technologies provide a problem-solving environment for researchers by facilitating the creation and execution of experiments from a pool of available services. In this paper we will show how Semantic Web technologies can be used to overcome a limitation of current workflow languages by capturing experimental constraints and goals, which we term scientist’s intent. We propose an ontology driven framework for capturing such intent based on workflow metadata combined with SWRL rules. Through the use of an example we will present the key benefits of the proposed framework in terms of enriching workflow output, assisting workflow execution and provenance support. We conclude with a discussion of the issues arising from application of this approach to the domain of social simulation.


eScience semantic grid workflow SWRL constraints goals 


  1. 1.
    Pennington, D.: Supporting large-scale science with workflows. In: Proceedings of the 2nd workshop on Workflows in support of large-scale science, High Performance Distributed Computing (2007)Google Scholar
  2. 2.
    Roure, D.D., Jennings, N., Shadbolt, N.: The semantic grid: a future e-science infrastructure. Grid Computing: Making the Global Infrastructure a Reality (2003)Google Scholar
  3. 3.
    Foster, I., Kesselman, C., Nick, J., Tuecke, S.: Grid services for distributed system integration. Morgan Kaufmann, San Francisco (2002)Google Scholar
  4. 4.
    Hielkema, F., Edwards, P., Mellish, C., Farrington, J.: A flexible interface to community-driven metadata. In: Proceedings of the eSocial Science conference 2007, Ann Arbor, Michigan (2007)Google Scholar
  5. 5.
    Lee, A., Neuendorffer, S.: Moml — a modeling markup language in xml —version 0.4. Technical report, University of California at Berkeley (2000)Google Scholar
  6. 6.
    Andrews, T.: Business process execution for web services, version 1.1 (2003), ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
  7. 7.
    Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T., Glover, K., Pocock, M., Wipat, A., Li, P.: Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics Journal 20(17), 3045–3054 (2004)CrossRefGoogle Scholar
  8. 8.
    Groth, P., Jiang, S., Miles, S., Munroe, S., Tan, V., Tsasakou, S., Moreau, L.: An architecture for provenance systems. ECS, University of Southampton (2006)Google Scholar
  9. 9.
    Goble, C.: Position statement: Musings on provenance, workflow and (semantic web) annotation for bioinformatics. In: Workshop on Data Derivation and Provenance, Chicago (2002)Google Scholar
  10. 10.
    Zachman, J.A.: A framework for information systems architecture. IBM Syst. J. 26(3), 276–292 (1987)CrossRefGoogle Scholar
  11. 11.
    Greenwood, M., Goble, C., Stevens, R., Zhao, J., Addis, M., Marvin, D., Moreau, L., Oinn, T.: Provenance of e-science experiments. In: Proceedings of the UK OST e-Science 2nd AHM (2003)Google Scholar
  12. 12.
    Chorley, A., Edwards, P., Preece, A., Farrington, J.: Tools for tracing evidence in social science. In: Proceedings of the Third International Conference on eSocial Science (2007)Google Scholar
  13. 13.
    Wilson, E.: An introduction to scientific research. McGraw-Hill, New York (1990)Google Scholar
  14. 14.
    Polhill, J., Pignotti, E., Gotts, N., Edwards, P., Preece, A.: A semantic grid service for experimentation with an agent-based model of land-use change. Journal of Artificial Societies and Social Simulation 10(2)2 (2007)Google Scholar
  15. 15.
    Pignotti, E., Edwards, P., Preece, A., Polhill, G., Gotts, N.: Semantic support for computational land-use modelling. In: Proceedings of the Fifth IEEE International Symposium on Cluster Computing and Grid (CCGrid) 2005, vol. 2, pp. 840–847. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  16. 16.
    Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jeager, E., Jones, M., Lee, E., Tao, J.: Scientific workflow management and the kepler system. Concurrency and Computation: Practice and Experience (2005)Google Scholar
  17. 17.
    Keller, U., Lausen, H., Stollberg, M.: On the semantics of functional descriptions of web services. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 605–619. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Stollberg, M., Hepp, M.: A refined goal model for semantic web services. In: Proceedings of the Second International Conference ion Internet and Web Applications and Services. ICIW apps 2007, pp. 17–23 (2007)Google Scholar
  19. 19.
    Hales, D., Rouchier, J., Edmonds, B.: Model-to-model analysis. Journal of Artificial Societies and Social Simulation 6(4) (2003)Google Scholar
  20. 20.
    Axtell, R., Axelrod, R., Epstein, J., Cohen, M.D.: Aligning simulation models: A case study and results. Computational and Mathematical Organization Theory 1(2), 123–141 (1996)CrossRefGoogle Scholar
  21. 21.
    Polhill, J.G., Gotts, N.M.: Evaluating a prototype self-description feature in an agent-based model of land use change. In: Amblard, F. (ed.) Proceedings of the Fourth Conference of the European Social Simulation Association, Toulouse, France, September 10-14, pp. 711–718 (2007)Google Scholar
  22. 22.
    Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., Kim, J.: Wings for pegasus: A semantic approach to creating very large scientific workflows. In: Proceedings of the 19th Annual Conference on Innovative Applications of Artificial Intelligence (IAAI), Vancouver, British Columbia, Canada (2006)Google Scholar
  23. 23.
    Miles, S., Munroe, S., Luck, M., Moreau, L.: Modelling the provenance of data in autonomous systems. In: AAMAS 2007: Proceedings of the 6th international joint conference on Autonomous agents and multiagent systems, pp. 1–8. ACM, New York (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Edoardo Pignotti
    • 1
  • Peter Edwards
    • 1
  • Alun Preece
    • 2
  • Nick Gotts
    • 3
  • Gary Polhill
    • 3
  1. 1.School of Natural & Computing SciencesUniversity of AberdeenAberdeenUK
  2. 2.School of Computer ScienceCardiff UniversityCardiffUK
  3. 3.The Macaulay Institute CraigiebucklerAberdeenUK

Personalised recommendations