The Creation and Evaluation of iSPARQL Strategies for Matchmaking

  • Christoph Kiefer
  • Abraham Bernstein
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5021)


This research explores a new method for Semantic Web service matchmaking based on iSPARQL strategies, which enables to query the Semantic Web with techniques from traditional information retrieval. The strategies for matchmaking that we developed and evaluated can make use of a plethora of similarity measures and combination functions from SimPack—our library of similarity measures. We show how our combination of structured and imprecise querying can be used to perform hybrid Semantic Web service matchmaking. We analyze our approach thoroughly on a large OWL-S service test collection and show how our initial strategies can be improved by applying machine learning algorithms to result in very effective strategies for matchmaking.


Service Description Triple Pattern Relevant Service Approximate Match Selectivity Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley, Reading (1999)Google Scholar
  2. 2.
    Bernstein, A., Kiefer, C., Stocker, M.: OptARQ: A SPARQL Optimization Approach Based on Triple Pattern Selectivity Estimation. Technical Report IFI-2007.02, Department of Informatics, University of Zurich (2007)Google Scholar
  3. 3.
    Bianchini, D., Antonellis, V.D., Melchiori, M., Salvi, D.: Semantic-Enriched Service Discovery. In: ICDEW, pp. 38–47 (2006)Google Scholar
  4. 4.
    Borgida, A., Brachman, R.J., McGuinness, D.L., Resnick, L.A.: CLASSIC: A Structural Data Model for Objects. In: SIGMOD, pp. 58–67 (1989)Google Scholar
  5. 5.
    Chang, C.-C., Lin, C.-J.: LIBSVM—A Library for Support Vector Machines (2001), Software available at
  6. 6.
    Cohen, W.W., Ravikumar, P., Fienberg, S.: A Comparison of String Distance Metrics for Name-Matching Tasks. In: IJCAI Workshop, pp. 73–78 (2003)Google Scholar
  7. 7.
    Corby, O., Dieng-Kuntz, R., Gandon, F., Faron-Zucker, C.: Searching the Semantic Web: Approximate Query Processing Based on Ontologies. Intelligent Systems 21(1), 20–27 (2006)CrossRefGoogle Scholar
  8. 8.
    Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecology 26(3), 297–302 (1945)CrossRefGoogle Scholar
  9. 9.
    Euzenat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology Alignment with OLA. In: EON, pp. 60–69 (2004)Google Scholar
  10. 10.
    Hsu, C.-W., Chang, C.-C., Lin, C.-J.: A Practical Guide to Support Vector Classification (2007)Google Scholar
  11. 11.
    Jaeger, M.C., Rojec-Goldmann, G., Mühl, G., Liebetruth, C., Geihs, K.: Ranked Matching for Service Descriptions using OWL-S. In: KiVS, pp. 91–102 (2005)Google Scholar
  12. 12.
    Kiefer, C., Bernstein, A., Lee, H.J., Klein, M., Stocker, M.: Semantic Process Retrieval with iSPARQL. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 609–623. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Kiefer, C., Bernstein, A., Stocker, M.: The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, Springer, Heidelberg (2007)Google Scholar
  14. 14.
    Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with OWLS-MX. In: AAMAS, pp. 915–922 (2006)Google Scholar
  15. 15.
    Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Soviet Physics Doklady 10(8), 707–710 (1966)MathSciNetGoogle Scholar
  16. 16.
    Lewis, D.D.: Evaluating Text Categorization. In: HLT Workshop, pp. 312–318 (1991)Google Scholar
  17. 17.
    Noia, T.D., Sciascio, E.D., Donini, F.M., Mongiello, M.: A System for Principled Matchmaking in an Electronic Marketplace. IJEC 8(4), 9–37 (2004)Google Scholar
  18. 18.
    Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.P.: Semantic Matching of Web Services Capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 333–347. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Provost, F., Fawcett, T.: Robust Classification for Imprecise Environments. Machine Learning 42(3), 203–231 (2001)zbMATHCrossRefGoogle Scholar
  20. 20.
    Raghavan, V.V., Bollmann, P., Jung, G.S.: Retrieval System Evaluation Using Recall and Precision: Problems and Answers. In: SIGIR, pp. 59–68 (1989)Google Scholar
  21. 21.
    Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34(1), 1–47 (2002)CrossRefGoogle Scholar
  22. 22.
    Stocker, M., Seaborne, A., Bernstein, A., Kiefer, C., Reynolds, D.: SPARQL Basic Graph Pattern Optimization Using Selectivity Estimation. In: WWW (2008)Google Scholar
  23. 23.
    Stoilos, G., Stamou, G., Kollias, S.: A String Metric for Ontology Alignment. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Sycara, K., Klusch, M., Widoff, S., Lu, J.: Dynamic Service Matchmaking Among Agents in Open Information Environments. SIGMOD Rec. 28(1), 47–53 (1999)CrossRefGoogle Scholar
  25. 25.
    Winkler, W.E., Thibaudeau, Y.: An Application of the Fellegi-Sunter Model of Record Linkage to The 1990 U.S. Decennial Census. Technical report, U.S. Bureau of the Census (1987)Google Scholar
  26. 26.
    Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2005)zbMATHGoogle Scholar
  27. 27.
    Zhang, L., Liu, Q., Zhang, J., Wang, H., Pan, Y., Yu, Y.: Semplore: An IR Approach to Scalable Hybrid Query of Semantic Web Data. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC 2007. LNCS, vol. 4825, pp. 653–665. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christoph Kiefer
    • 1
  • Abraham Bernstein
    • 1
  1. 1.Department of InformaticsUniversity of ZurichSwitzerland

Personalised recommendations