Advertisement

The Clusterization Process in an Adaptative Method of Image Segmentation

  • Aleksander Lamza
  • Zygmunt Wrobel
Conference paper
Part of the Advances in Soft Computing book series (AINSC, volume 47)

Summary

In the article a new method of automatic image segmentation is presented. The aim was to eliminate the necessity of defining the number of outcome areas. Homogeneous areas take part in the growth process. The areas merge when the homogeneousness condition is fulfilled. The threshold value changes during the segmentation process, fitting the changeable conditions.

Keywords

Image Segmentation Gray Level Homogeneousness Condition Segmentation Process Threshold Variance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cour, T., Benezit, F., Shi, J.: Spectral segmentation with multiscale graph decomposition. Computer Vision and Pattern Recognition 2, 1124–1131 (2005)Google Scholar
  2. 2.
    Dhawan, A.: Medical Image Analysis. Wiley-IEEE Press (2003)Google Scholar
  3. 3.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, New Jersey (2002)Google Scholar
  4. 4.
    Hoover, A., Jean-Baptiste, G., Jiang, X.: An Experimental Comparison of Range Image Segmentation Algorithms. IEEE Trans. Pattern Analysis and Machine Intelligence 18(7), 673–689 (1996)CrossRefGoogle Scholar
  5. 5.
    Lamecker, H., Lange, T., Seebß, M.: Automatic Segmentation of the Liver for Preoperative Planning of Resections. Proceedings MMVR, Studies in Health Technologies and Informatics 94, 171–174 (2003)Google Scholar
  6. 6.
    Lamza, A., Trela, M., Bialy, S., Wrobel, Z.: Agent-based method of automatic image segmentation with dynamic threshold. IEEE Signal Processing, 71–74 (2004)Google Scholar
  7. 7.
    Pantofaru, C., Hebert, M.: A Comparison of Image Segmentation Algorithms. Technical Report CMU-RI-TR-05-40, Robotics Institute, Carnegie Mellon University (2005)Google Scholar
  8. 8.
    Porikli, F.: Automatic Image Segmentation by Wave Propagation. In: SPIE Conference on Image Processing: Algorithms and Systems III, vol. 5298, pp. 536–543 (2004)Google Scholar
  9. 9.
    Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2004)Google Scholar
  10. 10.
    Veenman, C.J., Reinders, M.J.T., Backer, E.: A Cellular Coevolutionary Algorithm for Image Segmentation. IEEE Transactions on Image Processing 12(3), 304–316 (2003)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Wang, H., Suter, D.: A Model-Based Range Image Segmentation Algorithm Using a Novel Robust Estimator. In: 3rd International Workshop on Statistical and Computational Theories of Vision, Nice, France (2003)Google Scholar
  12. 12.
    Wrobel, Z., Koprowski, R.: Praktyka przetwarzania obrazu w programie MATLAB. Wydawnictwo Exit, Warszawa (2004)Google Scholar
  13. 13.
    Zielinski, K.W., Strzelecki, M.: Komputerowa analiza obrazu biomedycznego. Wstep do morfometrii i patologii ilosciowej. Wydawnictwo Naukowe PWN, Warszawa – Lodz (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Aleksander Lamza
    • 1
  • Zygmunt Wrobel
    • 2
  1. 1.Department of Biomedical Computer Systems, Institute of Computer Science, Faculty of Computer and Materials ScienceUniversity of Silesia in KatowiceSosnowiec 
  2. 2.No Affiliations 

Personalised recommendations