Advertisement

A Brief History of Provably-Secure Public-Key Encryption

  • Alexander W. Dent
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5023)

Abstract

Public-key encryption schemes are a useful and interesting field of cryptographic study. The ultimate goal for the cryptographer in the field of public-key encryption would be the production of a very efficient encryption scheme with a proof of security in a strong security model using a weak and reasonable computational assumption. This ultimate goal has yet to be reached. In this invited paper, we survey the major results that have been achieved in the quest to find such a scheme.

Keywords

Hash Function Encryption Scheme Random Oracle Random Oracle Model Challenge Ciphertext 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bellare, M., Boldyreva, A., Staddon, J.: Multi-recipient encryption schemes: Security notions and randomness re-use. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 85–99. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 26–45. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Bellare, M., Palacio, A.: Towards plaintext-aware public-key encryption without random oracles. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 48–62. Springer, Heidelberg (2004)Google Scholar
  4. 4.
    Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Proc. of the First ACM Conference on Computer and Communications Security, pp. 62–73 (1993)Google Scholar
  5. 5.
    Bellare, M., Rogaway, P.: Optimal asymmetric encryption. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Bellare, M., Yung, M.: Certifying permutations: Non-interactive zero-knowledge based on any trapdoor permutation. Journal of Cryptology 9(1), 149–166 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Birkett, J., Dent, A.W.: The generalised Cramer-Shoup and Kurosawa-Desmedt schemes are plaintext aware (unpublished manuscript, 2008)Google Scholar
  8. 8.
    Birkett, J., Dent, A.W.: Relations among notions of plaintext awareness. In: Cramer, R. (ed.) Public Key Cryptography – PKC 2008. LNCS, vol. 4939, pp. 47–64. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Katz, J.: Improved efficiency for CCA-secure cryptosystems built using identity-based encryption. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 87–103. Springer, Heidelberg (2005)Google Scholar
  11. 11.
    Boyen, X., Mei, Q., Waters, B.: Direct chosen ciphertext security from identity-based techniques. In: Proc. of the 12th ACM Conference on Computer and Communications Security, pp. 320–329 (2005)Google Scholar
  12. 12.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle model, revisited. In: Proc. of the 30th Annual ACM Symposium on the Theory of Computing – STOC 1998, pp. 209–218 (1998)Google Scholar
  13. 13.
    Canetti, R., Halevi, S., Katz, J.: Chosen-ciphertext security from identity-based encryption. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 207–222. Springer, Heidelberg (2004)Google Scholar
  14. 14.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2004)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Damgård, I.B.: Towards practical public key systems secure against chosen ciphertext attacks. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 445–456. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Dent, A.W.: The Cramer-Shoup encryption scheme is plaintext aware in the standard model. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 289–307. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Dent, A.W.: Fundamental problems in provable security and cryptography. Phil. Trans. R. Soc. A 364(1849), 3215–3230 (1849)CrossRefMathSciNetGoogle Scholar
  18. 18.
    ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on Information Theory 31, 469–472 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SAIM Journal on Computing 29(1), 1–28 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the 21st Symposium on Theory of Computer Science – STOC 1989, pp. 25–32. ACM, New York (1989)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S.: Probabilistic encryption. Journal of Computer and System Science 28, 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Herzog, J., Liskov, M., Micali, S.: Plaintext awareness via key registration. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)Google Scholar
  23. 23.
    Kurosawa, K., Desmedt, Y.: A new paradigm of hybrid encryption scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)Google Scholar
  24. 24.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: Proc. 22nd Symposium on the Theory of Computing – STOC 1990, pp. 427–437. ACM, New York (1990)CrossRefGoogle Scholar
  25. 25.
    Rabin, M.O.: Digitalized signatures and public-key functions as intractable as factorization. Technical Report MIT/LCS/TR-212, MIT Laboratory for Computer Science (1979)Google Scholar
  26. 26.
    Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 434–444. Springer, Heidelberg (1992)Google Scholar
  27. 27.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th Annual Symposium on Foundations of Computer Science, FOCS 1999, pp. 543–553. IEEE Computer Society, Los Alamitos (1999)Google Scholar
  28. 28.
    Teranishi, I., Ogata, W.: Relationship between standard model plaintext awareness and message hiding. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 226–240. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Alexander W. Dent
    • 1
  1. 1.Royal HollowayUniversity of LondonEghamUK

Personalised recommendations