This article presents an extension of the Tabu Search (TS) metaheuristic to continuous CSPs, where the domains are represented by floating point-bounded intervals. This leads to redefine the usual TS operators to take into account the special features of interval constraints: real variables encoded in floating points domains, high cardinality of the domains, nature of the CSP where constraints may be partially satisfied. To illustrate the expressiveness of the framework, we instantiate this method to compute an inner-approximation of a set of inequalities.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barichard, V., Hao, J.-K.: A Population and Interval Constraint Propagation Algorithm. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 88–101. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Chelouah, R., Siarry, P.: Tabu search applied to global optimization. European Journal on Operational Research (2000)Google Scholar
  3. 3.
    Cruz, J.: Constraint Reasoning for Differential Models. IOS Press, Amsterdam (2005)MATHGoogle Scholar
  4. 4.
    Fanni, A., Manunza, A., Marchesi, M., Pilo, F.: Tabu search metaheuristics for electromagnetic problemsoptimization in continuous domains. IEEE Transactions on Magnetics 35(3) (1999)Google Scholar
  5. 5.
    Franze, F., Speciale, N.: A tabu-search-based algorithm for continuous multiminima problems. International Journal for Numerical Methods in Engineering 50(3) (2001)Google Scholar
  6. 6.
    Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publishers, Dordrecht, The Netherlands (1997)MATHGoogle Scholar
  7. 7.
    Granvilliers, L., FrédéricBenhamou: Algorithm 852: RealPaver: An interval solver using constraint satisfaction techniques. ACM Transactions on Mathematical Software 32(1) (2006)Google Scholar
  8. 8.
    Hansen, E.R.: Global Optimization Using Interval Analysis. Pure and Applied Mathematics. Marcel Dekker Inc, New York (1992)MATHGoogle Scholar
  9. 9.
    Moore, R.E.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Charlotte Truchet
    • 1
  • Marc Christie
    • 2
  • Jean-Marie Normand
    • 1
  1. 1.LINA, UMR 6241Université de NantesNantesFrance
  2. 2.IRISA/INRIA RennesBretagne AtlantiqueRennesFrance

Personalised recommendations