FIsViz: A Frequent Itemset Visualizer

  • Carson Kai-Sang Leung
  • Pourang P. Irani
  • Christopher L. Carmichael
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5012)

Abstract

Since its introduction, frequent itemset mining has been the subject of numerous studies. However, most of them return frequent itemsets in the form of textual lists. The common cliché that “a picture is worth a thousand words” advocates that visual representation can enhance user understanding of the inherent relations in a collection of objects such as frequent itemsets. Many visualization systems have been developed to visualize raw data or mining results. However, most of these systems were not designed for visualizing frequent itemsets. In this paper, we propose a frequent itemset visualizer (FIsViz). FIsViz provides many useful features so that users can effectively see and obtain implicit, previously unknown, and potentially useful information that is embedded in data of various real-life applications.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proc. VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
    Ahlberg, C.: Spotfire: an information exploration environment. SIGMOD Record 25(4), 25–29 (1996)CrossRefGoogle Scholar
  3. 3.
    Ankerst, M., Elsen, C., et al.: Visual classification: an interactive approach to decision tree construction. In: Proc. KDD, pp. 392–396 (1999)Google Scholar
  4. 4.
    Appan, P., Sundaram, H., Tseng, B.L.: Summarization and visualization of communication patterns in a large-scale social network. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.) PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 371–379. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Brunk, C., Kelly, J., Kohavi, R.: MineSet: an integrated system for data mining. In: Proc. KDD, pp. 135–138 (1997)Google Scholar
  6. 6.
    Han, J., Cercone, N.: AViz: A visualization system for discovering numeric association rules. In: Terano, T., Liu, H., Chen, A.L.P. (eds.) PAKDD 2000. LNCS, vol. 1805, pp. 269–280. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Keim, D.A.: Information visualization and visual data mining. IEEE TVCG 8(1), 1–8 (2002)Google Scholar
  8. 8.
    Keim, D.A., Kriegel, H.-P.: Visualization techniques for mining large databases: a comparison. IEEE TKDE 8(6), 923–938 (1996)Google Scholar
  9. 9.
    Koren, Y., Harel, D.: A two-way visualization method for clustered data. In: Proc. KDD, pp. 589–594 (2003)Google Scholar
  10. 10.
    Lakshmanan, L.V.S., Leung, C.K.-S., Ng, R.T.: Efficient dynamic mining of constrained frequent sets. ACM TODS 28(4), 337–389 (2003)CrossRefGoogle Scholar
  11. 11.
    Leung, C.K.-S., Khan, Q.I.: DSTree: A tree structure for the mining of frequent sets from data streams. In: Proc. IEEE ICDM, pp. 928–932 (2006)Google Scholar
  12. 12.
    Leung, C.K.-S., Khan, Q.I., Hoque, T.: CanTree: a tree structure for efficient incremental mining of frequent patterns. In: Proc. IEEE ICDM, pp. 274–281 (2005)Google Scholar
  13. 13.
    Leung, C.K.-S., Mateo, M.A.F., Brajczuk, D.A.: A tree-based approach for frequent pattern mining from uncertain data. In: Washio, T., et al. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 653–661. Springer, Heidelberg (2008)Google Scholar
  14. 14.
    Munzner, T., Kong, Q., et al.: Visual mining of power sets with large alphabets. Technical report TR-2005-25, UBC, Canada (2005)Google Scholar
  15. 15.
    Pölzlbauer, G., Rauber, A., Dittenbach, M.: A vector field visualization technique for self-organizing maps. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 399–409. Springer, Heidelberg (2005)Google Scholar
  16. 16.
    Spence, R.: Information Visualization: Design for Interaction, 2nd edn. Prentice Hall, Harlow, UK (2007)Google Scholar
  17. 17.
    Stolte, C., Tang, D., Hanrahan, P.: Query, analysis, and visualization of hierarchically structured data using Polaris. In: Proc. KDD, pp. 112–122 (2002)Google Scholar
  18. 18.
    Yang, L.: Pruning and visualizing generalized association rules in parallel coordinates. IEEE TKDE 17(1), 60–70 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Carson Kai-Sang Leung
    • 1
  • Pourang P. Irani
    • 1
  • Christopher L. Carmichael
    • 1
  1. 1.The University of ManitobaWinnipegCanada

Personalised recommendations