Exploratory Hot Spot Profile Analysis Using Interactive Visual Drill-Down Self-Organizing Maps

  • Denny
  • Graham J. Williams
  • Peter Christen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5012)

Abstract

Real-life datasets often contain small clusters of unusual sub-populations. These clusters, or ‘hot spots’, are usually sparse and of special interest to an analyst. We present a methodology for identifying hot spots and ranking attributes that distinguish them interactively, using visual drill-down Self-Organizing Maps. The methodology is particularly useful for understanding hot spots in high dimensional datasets. Our approach is demonstrated using a large real life taxation dataset.

Keywords

self-organizing maps hot spot analysis attribute ranking imbalanced data interactive drill-down visualization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological Cybernetics 43, 59–69 (1982)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Williams, G.J., Huang, Z.: Mining the knowledge mine: The hot spots methodology for mining large real world databases. In: Sattar, A. (ed.) Canadian AI 1997. LNCS, vol. 1342, pp. 340–348. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  3. 3.
    Williams, G.J.: Evolutionary hot spots data mining - an architecture for exploring for interesting discoveries. In: Zhong, N., Zhou, L. (eds.) PAKDD 1999. LNCS (LNAI), vol. 1574, pp. 184–193. Springer, Heidelberg (1999)Google Scholar
  4. 4.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (2001)MATHGoogle Scholar
  5. 5.
    Denny, W.G.J., Christen, P.: Exploratory multilevel hot spot analysis: Australian Taxation Office case study. In: AusDM 2007, Gold Coast, Australia, ACS. CRPIT, vol. 70, pp. 73–80 (2007)Google Scholar
  6. 6.
    Han, J., Kamber, M.: Data Mining: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)Google Scholar
  7. 7.
    Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM toolbox for Matlab 5. Report A57, Helsinki University of Technology, Neural Networks Research Centre, Espoo, Finland (April 2000)Google Scholar
  8. 8.
    Iivarinen, J., Kohonen, T., Kangas, J., Kaski, S.: Visualizing the clusters on the Self-Organizing Map. In: Proceedings of the Conference on AI Research in Finland, vol. 12, pp. 122–126, Helsinki, Finland, Finnish AI Society (1994)Google Scholar
  9. 9.
    Tryba, V., Metzen, S., Goser, K.: Designing basic integrated circuits by Self-Organizing Feature Maps. In: International Workshop on Neural Networks and their Applications, Nanterre, France, ARC, SEE, EC2, November 1989, pp. 225–235 (1989)Google Scholar
  10. 10.
    Wells, W.D.: Psychographics: A critical review. Journal of Marketing Research (JMR) 12(2), 196–213 (1975)CrossRefGoogle Scholar
  11. 11.
    Trewin, D.: Socio-economic indexes for areas: Australia 2001. Technical Report 2039, Australian Bureau of Statistics (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Denny
    • 1
    • 2
  • Graham J. Williams
    • 3
    • 1
  • Peter Christen
    • 1
  1. 1.Department of Computer ScienceThe Australian National UniversityAustralia
  2. 2.Faculty of Computer ScienceUniversity of IndonesiaIndonesia
  3. 3.The Australian Taxation Office 

Personalised recommendations