On Determining the Optimal Partition in Agglomerative Clustering of Documents

  • Ahmad El Sayed
  • Hakim Hacid
  • Djamel Zighed
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4994)


The goal of any clustering algorithm producing flat partitions of data, is to find both the optimal clustering solution and the optimal number of clusters. One natural way to reach this goal without the need for parameters, is to involve a validity index in a clustering process, which can lead to an objective selection of the optimal number of clusters. In this paper, we provide an evaluation of the major relative indices involving them in an agglomerative clustering algorithm for documents. The evaluation seeks the indices ability to identify both the optimal solution and the optimal number of clusters. Then, we propose a new context-aware method that aims at enhancing the validity indices usage as stopping criteria in agglomerative algorithms. Experimental results show that the method is a step-forward in using, with more reliability, validity indices as stopping criteria.


Cluster Process Cluster Solution Validity Index Optimal Partition Agglomerative Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bezdek, J.C., Li, W., Attikiouzel, Y., Windham, M.P.: A geometric approach to cluster validity for normal mixtures. Soft Comput. 1(4), 166–179 (1997)Google Scholar
  2. 2.
    Davies, D.L., Bouldin, D.W.: A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence 1(2) (1979)Google Scholar
  3. 3.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. John Wiley & Sons, Chichester (2001)zbMATHGoogle Scholar
  4. 4.
    Dunn, J.C.: Well separated clusters and optimal fuzzy paritions. Journal Cybern 4, 95–104 (1974)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Cluster validity methods: Part i. SIGMOD Record 31(2), 40–45 (2002)CrossRefGoogle Scholar
  6. 6.
    Halkidi, M., Batistakis, Y., Vazirgiannis, M.: Clustering validity checking methods: Part ii. SIGMOD Record 31(3), 19–27 (2002)CrossRefGoogle Scholar
  7. 7.
    Jarvis, R.A., Patrick, E.A.: Clustering using a similarity measure based on shared near neighbors. IEEE Trans. Comput. 22(11), 1025–1034 (1973)CrossRefGoogle Scholar
  8. 8.
    Krzanowski, W.J., Lai, Y.T.: A Criterion for Determining the Number of Groups in a Data Set Using Sum-of-Squares Clustering. Biometrics 44, 23–34 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Milligan, G.W., Cooper, M.C.: An examination of procedures for determining the number of clusters in a data set. Psychometrika V50(2), 159–179 (1985)CrossRefGoogle Scholar
  10. 10.
    Raskutti, B., Leckie, C.: An evaluation of criteria for measuring the quality of clusters. In: IJCAI, pp. 905–910 (1999)Google Scholar
  11. 11.
    Saitta, S., Raphael, B., Smith, I.F.C.: A bounded index for cluster validity. In: MLDM, pp. 174–187 (2007)Google Scholar
  12. 12.
    Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)Google Scholar
  13. 13.
    Sergios Theodoridis, K.K.: Pattern recognition. Academic Press, London (1999)Google Scholar
  14. 14.
    Sharma, S.: Applied multivariate techniques. John Wiley and Sons, Chichester (1996)Google Scholar
  15. 15.
    Calinski, T., Harabasz, J.: A dendrite method for cluster analysis. Communications in Statistics 3, 1–27 (1974)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Machine Learning 55(3), 311–331 (2004)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ahmad El Sayed
    • 1
  • Hakim Hacid
    • 1
  • Djamel Zighed
    • 1
  1. 1.ERIC LaboratoryUniversity of LyonBron cedexFrance

Personalised recommendations