Advertisement

Temporal Extrapolation within a Static Clustering

  • Tim K. Cocx
  • Walter A. Kosters
  • Jeroen F. J. Laros
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4994)

Abstract

Predicting the behaviour of individuals is a core business of policy makers. This paper discusses a new way of predicting the “movement in time” of items through pre-defined classes by analysing their changing placement within a static, preconstructed 2-dimensional clustering. It employs the visualization realized in previous steps within item analysis, rather than performing complex calculations on each attribute of each item. For this purpose we adopt a range of well-known mathematical extrapolation methods that we adapt to fit our need for 2-dimensional extrapolation. Usage of the approach on a criminal record database to predict evolvement of criminal careers, shows some promising results.

Keywords

Static Cluster Extrapolation Method Multi Dimensional Scaling Criminal Career Item Behaviour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdi, H.: Least squares. In: Lewis-Beck, M., Bryman, A., Futing, T. (eds.) Encyclopedia for Research Methods for the Social Sciences, pp. 792–795. Sage, Thousand Oaks (2003)Google Scholar
  2. 2.
    Abdi, H.: Signal detection theory. In: Salkind, N.J. (ed.) Encyclopedia of Measurement and Statistics, Sage, Thousand Oaks (2007)Google Scholar
  3. 3.
    Anderson, J.: Learning and Memory. Wiley and Sons, New York (1995)Google Scholar
  4. 4.
    Bartels, R.H., Beatty, J.C., Barsky, B.A.: An Introduction to Splines for Use in Computer Graphics and Geometric Modelling. Morgan Kaufmann, San Francisco (1987)Google Scholar
  5. 5.
    Broekens, J., Cocx, T., Kosters, W.A.: Object-centered interactive multi-dimensional scaling: Let’s ask the expert. In: Proceedings of the Eighteenth Belgium-Netherlands Conference on Artificial Intelligence (BNAIC 2006), pp. 59–66 (2006)Google Scholar
  6. 6.
    Davison, M.L.: Multidimensional Scaling. John Wiley and Sons, New York (1983)zbMATHGoogle Scholar
  7. 7.
    de Bruin, J.S., Cocx, T.K., Kosters, W.A., Laros, J.F.J., Kok, J.N.: Data mining approaches to criminal career analysis. In: Proceedings of the Sixth IEEE International Conference on Data Mining (ICDM 2006), pp. 171–177 (2006)Google Scholar
  8. 8.
    de Bruin, J.S., Cocx, T.K., Kosters, W.A., Laros, J.F.J., Kok, J.N.: Onto clustering criminal careers. In: Proceedings of the ECML/PKDD 2006 Workshop on Practical Data Mining: Applications, Experiences and Challenges, pp. 92–95 (2006)Google Scholar
  9. 9.
    Kosters, W.A., van Wezel, M.C.: Competitive neural networks for customer choice models. In: E-Commerce and Intelligent Methods, Studies in Fuzziness and Soft Computing 105, pp. 41–60. Physica-Verlag, Springer (2002)Google Scholar
  10. 10.
    Sun, R., Merrill, E., Peterson, T.: From implicit skills to explicit knowledge: A bottom-up model of skill learning. Cognitive Science 25(2), 203–244 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Tim K. Cocx
    • 1
  • Walter A. Kosters
    • 1
  • Jeroen F. J. Laros
    • 1
  1. 1.Leiden Institute of Advanced Computer ScienceLeiden UniversityThe Netherlands

Personalised recommendations