Action Rule Extraction from a Decision Table: ARED

  • Seunghyun Im
  • Zbigniew W. Raś
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4994)


In this paper, we present an algorithm that discovers action rules from a decision table. Action rules describe possible transitions of objects from one state to another with respect to a distinguished attribute. The previous research on action rule discovery required the extraction of classification rules before constructing any action rule. The new proposed algorithm does not require pre-existing classification rules, and it uses a bottom up approach to generate action rules having minimal attribute involvement.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agrawal, R., Srikant, R.: Fast algorithm for mining association rules. In: Proceeding of the Twentieth International Conference on VLDB, pp. 487–499 (1994)Google Scholar
  2. 2.
    Dardzińska, A., Raś, Z.: Extracting rules from incomplete decision systems. In: Foundations and Novel Approaches in Data Mining, Studies in Computational Intelligence, vol. 9, pp. 143–154. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Fensel, D.: Ontologies: a silver bullet for knowledge management and electronic commerce. Springer, Heidelberg (1998)Google Scholar
  4. 4.
    Geffner, H., Wainer, J.: Modeling action, knowledge and control. In: ECAI, pp. 532–536 (1998)Google Scholar
  5. 5.
    Greco, S., Matarazzo, B., Pappalardo, N., Slowiński, R.: Measuring expected effects of interventions based on decision rules. J. Exp. Theor. Artif. Intell. 17(1-2), 103–118Google Scholar
  6. 6.
    Grzymala-Busse, J.: A new version of the rule induction system LERS. Fundamenta Informaticae 31(1), 27–39 (1997)zbMATHGoogle Scholar
  7. 7.
    He, Z., Xu, X., Deng, S., Ma, R.: Mining action rules from scratch. Expert Systems with Applications 29(3), 691–699 (2005)CrossRefGoogle Scholar
  8. 8.
    Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases, University of California, Irvine, Dept. of Information and Computer Sciences (1998),
  9. 9.
    Øhrn, A., Komorowski, J.: ROSETTA: A Rough Set Toolkit for Analysis of Data (1997)Google Scholar
  10. 10.
    Pawlak, Z.: Information systems - theoretical foundations. Information Systems Journal 6, 205–218 (1981)zbMATHCrossRefGoogle Scholar
  11. 11.
    Qiao, Y., Zhong, K., Wang, H.-A., Li, X.: Developing event-condition-action rules in real-time active database. In: Proceedings of the 2007 ACM symposium on Applied computing, pp. 511–516. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Raś, Z.W., Dardzińska, A.: Action rules discovery, a new simplified strategy. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 445–453. Springer, Heidelberg (2006)Google Scholar
  13. 13.
    Raś, Z.W., Tzacheva, A., Tsay, L.-S., Gürdal, O.: Mining for interesting action rules. In: Proceedings of IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 2005), Compiegne University of Technology, France, pp. 187–193 (2005)Google Scholar
  14. 14.
    Raś, Z.W., Wieczorkowska, A.: Action-Rules: How to increase profit of a company. In: Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 587–592. Springer, Heidelberg (2000)Google Scholar
  15. 15.
    Raś, Z., Wyrzykowska, E., Wasyluk, H.: ARAS: Action rules discovery based on agglomerative strategy. In: Mining Complex Data, Post-Proceedings of 2007 ECML/PKDD Third International Workshop (MCD 2007). LNCS (LNAI), vol. 4944, pp. 196–208. Springer, Heidelberg (2007)Google Scholar
  16. 16.
    Skowron, A.: Rough sets and boolean reasoning. In: Granular Computing: an Emerging Paradigm, pp. 95–124. Physica-Verlag (2001)Google Scholar
  17. 17.
    Tsay, L.-S., Raś, Z.W.: Action rules discovery system DEAR3, in Foundations of Intelligent Systems. In: Esposito, F., Raś, Z.W., Malerba, D., Semeraro, G. (eds.) ISMIS 2006. LNCS (LNAI), vol. 4203, pp. 483–492. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Tzacheva, A., Ras, Z.W.: Constraint based action rule discovery with single classification rules. In: An, A., Stefanowski, J., Ramanna, S., Butz, C.J., Pedrycz, W., Wang, G. (eds.) RSFDGrC 2007. LNCS (LNAI), vol. 4482, pp. 322–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Seunghyun Im
    • 1
  • Zbigniew W. Raś
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of Pittsburgh at JohnstownJohnstownUSA
  2. 2.Department of Computer ScienceUniversity of North CarolinaCharlotteUSA
  3. 3.Institute of Computer SciencePolish Academy of SciencesWarsawPoland

Personalised recommendations