Evaluating Linear Recursive Filters Using Novel Data Formats for Dense Matrices

  • Przemysław Stpiczyński
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4967)


The aim of this contribution is to show that the performance of the recently developed high performance algorithm for evaluating linear recursive filters can be increased by using new generalized data structures for dense matrices introduced by F. G. Gustavson. The new implementation is based on vectorized algorithms for banded triangular Toeplitz matrix - vector multiplication and the algorithm for solving linear recurrence systems with constant coefficients. The results of experiments performed on Intel Itanium 2 and Cray X1 are also presented and discussed.


Toeplitz Matrix Linear Recurrence Data Layout Block Column Generalize Data Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bario, R., Melendo, B., Serrano, S.: On the numerical evaluation of linear recurrences. J. Comput. Appl. Math. 150, 71–86 (2003)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Blelloch, G., Chatterjee, S., Zagha, M.: Solving linear recurrences with loop raking. Journal of Parallel and Distributed Computing 25, 91–97 (1995)CrossRefGoogle Scholar
  3. 3.
    Chandra, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J., Menon, R.: Parallel Programming in OpenMP. Morgan Kaufmann Publishers, San Francisco (2001)Google Scholar
  4. 4.
    Dongarra, J., Duff, I., Sorensen, D., Van der Vorst, H.: Solving Linear Systems on Vector and Shared Memory Computers. SIAM, Philadelphia (1991)Google Scholar
  5. 5.
    Dongarra, J., Hammarling, S., Sorensen, D.: Block reduction of matrices to condensed form for eigenvalue computations. J. Comp. Appl. Math 27, 215–227 (1989)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Gustavson, F.G.: New generalized data structures for matrices lead to a variety of high performance algorithms. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2001. LNCS, vol. 2328, pp. 418–436. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Gustavson, F.G.: High-performance linear algebra algorithms using new generalized data structures for matrices. IBM J. Res. Dev. 47, 31–56 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Larriba-Pey, J.L., Navarro, J.J., Jorba, A., Roig, O.: Review of general and Toeplitz vector bidiagonal solvers. Parallel Comput. 22, 1091–1125 (1996)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Netwok Computer Services Inc.: The AHPCRC Cray X1 primer, http://www.ahpcrc.org/publications/Primer.pdf
  10. 10.
    Paprzycki, M., Stpiczyński, P.: Solving linear recurrence systems on the Cray Y-MP. In: Waśniewski, J., Dongarra, J. (eds.) PARA 1994. LNCS, vol. 879, pp. 416–424. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  11. 11.
    Paprzycki, M., Stpiczyński, P.: Parallel solution of linear recurrence systems. Z. Angew. Math. Mech. 76, 5–8 (1996)MATHGoogle Scholar
  12. 12.
    Parhi, K.K., Messerschmitt, D.: Pipeline interleaving and parallelism in recursive digital filters, part ii: Pipelined incremental block filtering. IEEE Trans. Acoust., Speech Signal Processing ASSP-37, 1118–1135 (1989)CrossRefGoogle Scholar
  13. 13.
    Robelly, J.P., Cichon, G., Seidel, H., Fettweis, G.: Implementation of recursive digital filters into vector SIMD DSP architectures. In: Proc. International Conference on Acoustics, Speech and Signal Processing. ICASSP 2004, Montreal, Canada, May 17-21 (2004)Google Scholar
  14. 14.
    Smith, S.W.: The Scientist and Engineer’s Guide to Digital Signal Processing. California Technical Publishing, San Diego (1997)Google Scholar
  15. 15.
    Stpiczyński, P.: Parallel algorithms for solving linear recurrence systems. In: Bougé, L., Robert, Y., Trystram, D., Cosnard, M. (eds.) CONPAR 1992 and VAPP 1992. LNCS, vol. 634, pp. 343–348. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Stpiczyński, P.: Solving linear recurrence systems using level 2 and 3 BLAS routines. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 1059–1066. Springer, Heidelberg (2004)Google Scholar
  17. 17.
    Stpiczyński, P.: Evaluating recursive filters on distributed memory parallel computers. Comm. Numer. Meth. Engng. 22, 1087–1095 (2006)CrossRefMATHGoogle Scholar
  18. 18.
    Stpiczyński, P., Paprzycki, M.: Fully vectorized solver for linear recurrence systems with constant coefficients. In: Palma, J.M.L.M., Dongarra, J., Hernández, V. (eds.) VECPAR 2000. LNCS, vol. 1981, pp. 541–551. Springer, Heidelberg (2001)Google Scholar
  19. 19.
    van der Vorst, H., Dekker, K.: Vectorization of linear recurrence relations. SIAM J. Sci. Stat. Comput. 10, 27–35 (1989)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Przemysław Stpiczyński
    • 1
  1. 1.Department of Computer ScienceMaria Curie–Skłodowska UniversityLublinPoland

Personalised recommendations