Application of Rectangular Full Packed and Blocked Hybrid Matrix Formats in Semidefinite Programming for Sensor Network Localization

  • Jacek Błaszczyk
  • Ewa Niewiadomska-Szynkiewicz
  • Michał Marks
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4967)


This paper addresses issues associated with reduction of memory usage for a semidefinite programming (SDP) relaxation based method and its application to position estimation problem in ad-hoc wireless sensor networks. We describe two new CSDP solvers (semidefinite programming in C) using two algorithms for Cholesky factorization implementing RFP and BHF matrix storage formats and different implementations of BLAS/LAPACK libraries (Netlib’s BLAS/LAPACK, sequential and parallel versions of ATLAS, Intel MKL and GotoBLAS). The numerical results given and discussed in the final part of the paper show that using both RFP and BHF data formats preserve high numerical performance of the LAPACK full data format while using half the computer storage.


semidefinite programming Cholesky factorization novel matrix data structures wireless sensor networks localization methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kannan, A.A., Mao, G., Vucetic, B.: Simulated annealing based localization in wireless sensor network. In: Proceedings of the 30th Annual IEEE Conference on Local Computer Networks, pp. 513–514Google Scholar
  2. 2.
    Shang, Y., Ruml, W., Zhang, Y., Fromherz, M.P.J.: Localization from connectivity in sensor networks. IEEE Transactions on Parallel and Distributed Systems 15(11), 961–974 (2004)CrossRefGoogle Scholar
  3. 3.
    Ji, X.: Sensor positioning in wireless ad-hoc sensor networks with multidimensional scaling. In: Proceedings of IEEE INFOCOM 2004 (2004)Google Scholar
  4. 4.
    Biswas, P., Ye, Y.: Semidefinite programming for ad hoc wireless sensor network localization. In: Proceedings of the Third International Symposium on Information Processing in Sensor Networks, pp. 46–54Google Scholar
  5. 5.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in System and Control Theory. Studies in Applied Mathematics, vol. 15Google Scholar
  6. 6.
    Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods & Software 11-2(1-4), 613–623 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Helmberg, C., Rendl, F., Vanderbei, R.J., Wolkowicz, H.: An interior-point method for semidefinite programming. SIAM Journal on Optimization 6(2), 342–361Google Scholar
  8. 8.
    Borchers, B., Young, J.G.: Implementation of a primal-dual method for SDP on a shared memory parallel architecture. Computational Optimization and Applications 37(3), 355–369 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Fujisawa, K., Kojima, M., Nakata, K., Yamashita, M.: SDPA (semidefinite programming algorithm) users manual - version 6.00. Technical Report B–308, Tokyo Institute of Technology (1995)Google Scholar
  10. 10.
    Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods & Software 11-2(1-4), 625–653 (1999)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Gustavson, F.G., Waśniewski, J.: Rectangular full packed format for LAPACK algorithms timings on several computers. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Gustavson, F.G., Reid, J.K., Waśniewski, J.: Algorithm 865: Fortran 95 subroutines for Cholesky factorization in blocked hybrid format. ACM Transactions on Mathematical Software 33(1)  8Google Scholar
  13. 13.
    Andersen, B.S., Gunnels, J.A., Gustavson, F.G., Reid, J.K., Waśniewski, J.: A fully portable high performance minimal storage hybrid format Cholesky algorithm. ACM Transactions on Mathematical Software 31(2), 201–227Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Jacek Błaszczyk
    • 1
  • Ewa Niewiadomska-Szynkiewicz
    • 1
  • Michał Marks
    • 1
  1. 1.Institute of Control and Computation Engineering Faculty of Electronics and Information TechnologyWarsaw University of TechnologyWarsawPoland

Personalised recommendations