Mantle Plumes pp 439-464 | Cite as

Seismic Anisotropy in the Asthenosphere Beneath the Eifel Region, Western Germany

  • Kristoffer T. Walker
  • Götz H. R. Bokelmann
  • Simon L. Klemperer
  • Günter Bock
  • The Eifel Plume Team

Abstract

We provide evidence for a plume-like upwelling beneath the Eifel hotspot, Western Germany, by using teleseismic shear-wave splitting to resolve the anisotropy associated with upwelling flow that is spreading laterally into the asthenosphere. The variation in fast-polarization azimuth we find across the Eifel hotspot is explained by a model of slowly upwelling material that is horizontally being deflected or sheared in a parabolic asthenospheric flow (PAF) pattern toward west-southwest, a direction that correlates with Eurasian absolute plate motion. We suggest that the lack of an age progression for Eifel volcanism, which is expected for a fixed-upwelling model, is a result of (1) sporadic volcanism due to a low excess plume temperature and/or varying crustal stresses that periodically relax and facilitate eruption, and (2) complex upwelling flow pathways and/or Late Tertiary changes in the slow Eurasian plate motion. The success of the PAF model in fitting the data is remarkable given the small number of parameters (four) and the consistency with the plate motion direction determined from geology and/or geodesy. This suggests that a predictable mantle-anisotropy pattern may exist also for other hotspots driven by plume-like upwellings, and that splitting can be a useful diagnostic to differentiate between plume-like and alternative sources for mantle hotspots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsina D, Snieder R (1995) Small-scale sublithospheric continental mantle deformation: Constraints from SKS splitting observations. Geophys J Int 123:431–448CrossRefGoogle Scholar
  2. Anderson DL (1994) The sublithospheric mantle as the source of continental flood basalts: The case against the continental lithosphere and plume head reservoirs. Earth Planet Sci Lett 123:269–280CrossRefGoogle Scholar
  3. Babuska V, Plomerová J (1993) Lithospheric thickness and velocity anisotropy-seismological and geothermal aspects. Tectonophysics 225:79–89CrossRefGoogle Scholar
  4. Bijwaard H, Spakman W (1999) Tomographic evidence for a narrow whole mantle plume below Iceland. Earth Planet Sci Lett 166:121–126CrossRefGoogle Scholar
  5. Bormann P, Burghardt P-T, Makeyeva LI, Vinnik LP (1993) Teleseismic shear-wave splitting and deformations in Central Europe. Phys Earth Planet Inter 78:157–166CrossRefGoogle Scholar
  6. Bormann P, Grunthal G, Kind R, Montag H (1996) Upper mantle anisotropy beneath Central Europe from SKS wave splitting: Effects of absolute plate motion and lithosphere-asthenosphere boundary topography. J Geodyn 22:11–32CrossRefGoogle Scholar
  7. Crampin S (1991) Wave propagation through fluid-filled inclusions of various shapes: Interpretation of extensive-dilatancy anisotropy. Geophys J Int 104:611–623CrossRefGoogle Scholar
  8. Davies GF, Richards MA (1992) Mantle convection. J Geology 100:151–206CrossRefGoogle Scholar
  9. Dietz RS (1961) Continent and ocean basin evolution by spreading of the sea floor: Nature 190:854–857CrossRefGoogle Scholar
  10. Edel JB, Fluck P (1989) The upper Rhenish Shield basement (Vosges, Upper Rhinegraben and Schwarzwald): main structural features deduced from magnetic, gravimetric and geological data. Tectonophysics 169:303–316CrossRefGoogle Scholar
  11. Foulger GR, Pritchard MJ, Julian BR, Evans JR, Allen RM, Nolet G, Morgan WJ, Bergsson BH, Erlendsson P, Jakobsdottir S, Ragnarsson S, Stefansson R, Vogfjord K (2001) Seismic tomography shows that upwelling beneath Iceland is confined to the upper mantle. Geophys J Int 146:504–530CrossRefGoogle Scholar
  12. Gao S, Davis PM, Liu H, Slack PD, Rigor AW, Zorin YA, Mordvinova VV, Kozhevnikov VM, Logatchev NA (1997) SKS splitting beneath continental rift zones. J Geophys Res 102:22,781–22,797Google Scholar
  13. Gripp AE, Gordon RG (2002) Young tracks of hotspots and current plate velocities. Geophys J Int. 150:321–361CrossRefGoogle Scholar
  14. Grunewald S, Weber M, Kind R (2001) The upper mantle under Central Europe: Indications for the Eifel plume. Geophys J Int 147:590–601CrossRefGoogle Scholar
  15. Hess H (1962) The history of ocean basins. In Engel, AEJ and others (eds) Petrologic studies: A volume to honor AF Buddington, Boulder CO, Geological Society of America pp 599–620Google Scholar
  16. Illies JH, Prodehl, C, Schmincke H-U, Semmel A (1979) The Quaternary uplift of the Rhenish shield in Germany, Tectonophysics, 61:197–225CrossRefGoogle Scholar
  17. Jung S, Hoernes S (2000) The major-and trace element and isotope (Sr, Nd, O) geochemistry of Cenozoic alkaline rift-type volcanic rocks from the Rhön area (central Germany): Petrology, mantle source characteristics and implications for asthenosphere-lithosphere interactions Journal of Volcanology and Geothermal Research 99:27–53CrossRefGoogle Scholar
  18. Jung H, Karato S-I (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463CrossRefGoogle Scholar
  19. Kaminski E, Ribe E (2002) Timescales for the evolution of seismic anisotropy in mantle flow. G-cubed 3:101029/2001GC000222Google Scholar
  20. Karato S-I, Wu P (1993) Rheology of the upper mantle: A synthesis. Science 260:771–777CrossRefGoogle Scholar
  21. Karato S-I (2003) Mapping water content in the upper mantle. In Eiler J (ed) Inside the Subduction Factory. Geophys Monograph 138, American Geophys Union pp 135–152Google Scholar
  22. Kendall J-M (1994) Teleseismic arrivals at a mid-ocean ridge: Effects of mantle melt and anisotropy. Geophys Res Lett 21:301–304CrossRefGoogle Scholar
  23. Keyser M, Ritter JRR, Jordan M (2002) 3D shear-wave velocity structure of the Eifel plume, Germany. Earth Planet Sci Lett 203:59–82CrossRefGoogle Scholar
  24. King SD, Anderson DL (1998) Edge-driven convection. Earth Planet Sci Lett 160:289–296CrossRefGoogle Scholar
  25. Leibecker J, Gatzemeier A, Honig M, Kuras O, Soyer W (2002) Evidence of electrical anisotropic structures in the lower crust and upper mantle beneath the Rhenish Shield. Earth Planet Sci Lett 202:289–302CrossRefGoogle Scholar
  26. Li X, Kind R, Yuan X, Sobolev SV, Hanka W, Ramesh DS, Gu Y, Dziewonski AM (2003) Seismic observation of narrow plumes in the oceanic upper mantle. Geophys Res Lett 30:1334, doi:101029/2002GL015411CrossRefGoogle Scholar
  27. Milne-Thomson LM (1968) Theoretical Hydrodynamics. Macmillan, New York, ed 5, pp211–213Google Scholar
  28. Minster JB, Jordan TH (1978) Present-day plate motions. J Geophys Res 83:5331–5354Google Scholar
  29. Montagner JP (2002) Upper mantle low anisotropy channels below the Pacific Plate. Earth Planet Sci Lett 202:263–274CrossRefGoogle Scholar
  30. Montelli R, Nolet G, Dahlen FA, Masters G, Engdahl ER, Huang SH (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303:338–343CrossRefGoogle Scholar
  31. Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43CrossRefGoogle Scholar
  32. Müller B, Wehrle V, Fuchs K (1997) The 1997 release of the world stress map. http://wwwworld-stress-map.org/Google Scholar
  33. Ribe N, Christensen U (1999) The dynamical origin of Hawaiian volcanism. Earth Planet Sci Lett 171:517–531CrossRefGoogle Scholar
  34. Ritsema J, Allen RM (2003) The elusive mantle plume. Earth Planet Sci Lett 207:1–12CrossRefGoogle Scholar
  35. Ritter JRR (2005) Small-scale mantle plumes: Imaging and geodynamic aspects. In Wenzel, F (ed) Modern perspectives in seismology, Springer, Heidelberg, 69–94Google Scholar
  36. Ritter JRR, Achauer U, Christensen UR, The Eifel Plume Team (2000) The teleseismic tomography experiment in the Eifel Region, Central Europe: Design and First Results. Seism Res Lett 71:437–443Google Scholar
  37. Ritter JRR, Jordan M, Christensen UR, Achauer U (2001) A mantle plume below the Eifel volcanic fields, Germany. Earth Planet Sci Lett 186:7–14CrossRefGoogle Scholar
  38. Rümpker G, Ryberg T (2000) New Fresnel-zone estimates for shear-wave splitting observations from finite-difference modeling. Geophys Res Lett 27:2005–2008CrossRefGoogle Scholar
  39. Rümpker G, Ryberg T, Bock G, DESERT Seismology Group (2003) Boundary-layer mantle flow under the Dead Sea transform fault inferred from seismic anisotropy. Nature 425:497–501CrossRefGoogle Scholar
  40. Rümpker G, Silver PG (1998) Apparent shear-wave splitting parameters in the presence of vertically varying anisotropy. Geophys J Int 135:790–800CrossRefGoogle Scholar
  41. Rümpker G, Silver PG (2000) Calculating splitting parameters for plume-type anisotropic structures of the upper mantle. Geophys J Int 143:507–520CrossRefGoogle Scholar
  42. Rümpker G, Tommasi A, Kendall J-M (1999) Numerical simulations of depth-dependent anisotropy and frequency-dependent wave propagation effects, J. Geophys. Res. 104: 23141–23153CrossRefGoogle Scholar
  43. Saltzer R, Gaherty J, Jordan TH (2000) How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth? Geophys J Int 141:374–390CrossRefGoogle Scholar
  44. Savage MK (1999) Seismic anisotropy and mantle deformation: What have we learned from shear wave splitting? Rev Geophys 103:65–106CrossRefGoogle Scholar
  45. Savage MK, Sheehan AF (2000) Seismic anisotropy and mantle flow from the Great Basin to the Great Plains, western United States. J Geophys Res 105:13,715–13,734Google Scholar
  46. Schutt D, Humphreys ED (2001) Evidence for a deep asthenosphere beneath North America from western United States SKS splits. Geology 29:291–294CrossRefGoogle Scholar
  47. Silver P (1996) Seismic anisotropy beneath the continents: Probing the depths of geology. Ann Rev Earth Planet Sci 24:385–432CrossRefGoogle Scholar
  48. Silver PG, Chan WW (1991) Shear-wave splitting and subcontinental mantle deformation. J Geophys Res 96:16,429–16,454Google Scholar
  49. Sleep N (1990) Hotspots and mantle plumes: Some phenomenology. J Geophys Res 95:6715–6736Google Scholar
  50. Smith AD, Lewis C (1999) The planet beyond the plume hypothesis. Earth Science Rev 48:135–182CrossRefGoogle Scholar
  51. Smith GP, Ekström G (1999) A global study of Pn anisotropy beneath continents J Geophys Res 104:963–980CrossRefGoogle Scholar
  52. Tommasi A (1998) Forward modeling of the development of seismic anisotropy in the upper mantle. Earth Planet Sci Lett 160:1–18CrossRefGoogle Scholar
  53. Vinnik LP, Makeyeva LI, Milev A, Usenko AYu (1992) Global patterns of azimuthal anisotropy and deformations in the continental mantle. Geophys J Int 111:433–447CrossRefGoogle Scholar
  54. Walker KT (2004) Exploring problems in tectonics and geodynamics with seismology. PhD thesis, Stanford University, 273 ppGoogle Scholar
  55. Walker KT, Bokelmann GHR, Klemperer SL (2001) Shear-wave splitting to test mantle deformation models around Hawaii. Geophys Res Lett 28:4319–4322CrossRefGoogle Scholar
  56. Walker KT, Bokelmann GHR, Klemperer SL (2003) Shear-wave splitting to test mantle deformation models around Hawaii, Reply. Geophys Res Lett 30:1676, doi:101029/2002GL016712CrossRefGoogle Scholar
  57. Walker KT, Nyblade AA, Bokelmann GHR, Klemperer SL, Owens, TJ (2004a) On the relationship between extension and anisotropy: Constraints from shear-wave splitting across the East African Plateau. J Geophys Res 109:B0802, 101029/2003JB002866Google Scholar
  58. Walker KT, Bokelmann GHR, Klemperer SL (2004b) Shear-wave splitting reveals mantle upwelling beneath eastern Nevada, USA. Earth Planet Sci Lett, 222:529–542CrossRefGoogle Scholar
  59. White RS, McKenzie DP (1989) Magmatism at rift zones: the generation of volcanic continental margins and flood basalts. J Geophys Res 94:7685–7729CrossRefGoogle Scholar
  60. Wolfe CJ, Bjarnason GC, VanDecar JC, Solomon SC (2002) Assessing the depth resolution of tomographic models of upper mantle structure beneath Iceland. Geophys Res Lett 29:101029/2001GL013657Google Scholar
  61. Wolfe CJ, Silver PG (1998) Seismic anisotropy of oceanic upper mantle: Shear-wave splitting methodologies and observations. J Geophys Res 103:749–771CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Kristoffer T. Walker
    • 1
  • Götz H. R. Bokelmann
    • 2
  • Simon L. Klemperer
    • 3
  • Günter Bock
    • 4
  • The Eifel Plume Team
  1. 1.Institute of Geophysics and Planetary Physics, Scripps Institution of OceanographyUniversity of CaliforniaSan Diego
  2. 2.Laboratoire de TectonophysiqueUniversité Montpellier IIMontpellierFrance
  3. 3.Department of GeophysicsStanford UniversityStanford
  4. 4.GeoForschungsZentrum PotsdamPotsdam

Personalised recommendations