Advertisement

Investigating the Neural Correlates of Percepts Using Magnetoencephalography and Magnetic Source Imaging

  • Thomas Hartmann
  • Nathan Weisz
  • Winfried Schlee
  • Thomas ElbertEmail author
Part of the On Thinking book series (ONTHINKING, volume 1)

Abstract

Magnetoencephalography (MEG) has become an important tool for neuroscientists. The high temporal resolution and the low signal-to-noise ratio of MEG provide advantages that other neuroscientific methods do not. Owing to recent findings concerning the relationship between perception and neuronal oscillations, more attention is being drawn to the importance of MEG. This chapter provides an introduction to oscillatory brain dynamics and outlines the fundamental and recent research on this topic. It also includes an overview of the basic principles of MEG and compares MEG with other neuroscientific methods such as imaging techniques like functional magnetic resonance imaging, positron emission tomography and electroencephalography. Finally, as an example of the application of MEG in current research, a short review of our work on tinnitus is provided, including links to current research on general perception.

Keywords

Neural Correlate Gamma Band Tinnitus Patient Cortical Column Neuronal Oscillation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles M (1982) Role of the cortical neuron: integrator or coincidence detector? Isr J Med Sci 18:83–92PubMedGoogle Scholar
  2. Burke M, Bührle C (2006) BOLD response during uncoupling of neuronal activity and CBF. Neuroimage 32:1–8PubMedCrossRefGoogle Scholar
  3. Dobie RA (2003) Depression and tinnitus. Otolaryngol Clin North Am 36:383–388PubMedCrossRefGoogle Scholar
  4. Dohrmann K, Elbert T, Schlee W, Weisz N (2007a) Tuning the tinnitus percept by modification of synchronous brain activity. Restor Neurol Neurosci 25:371–378PubMedGoogle Scholar
  5. Dohrmann K, Weisz N, Schlee W, Hartmann T, Elbert T (2007b) Neurofeedback for treating tinnitus. Prog Brain Res 166:473–485PubMedCrossRefGoogle Scholar
  6. Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M, Reitboeck HJ (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analyses in the cat. Biol Cybern 60:121–130PubMedCrossRefGoogle Scholar
  7. Eckhorn R, Frien A, Bauer R, Woelbern T, Kehr H (1993) High frequency (60–90 Hz) oscillations in primary visual cortex of awake monkey. Neuroreport 4:243–246PubMedCrossRefGoogle Scholar
  8. Eggermont JJ, Roberts LE (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–682PubMedCrossRefGoogle Scholar
  9. Elbert T (1998) Neuromagnetism. In: Andrä W, Nowak H (eds) Magnetism in medicine. Wiley, New York, pp 190–262Google Scholar
  10. Engel AK, König P, Gray CM, Singer W (1990) Stimulus-dependent neuronal oscillations in cat visual cortex: inter-columnar interaction as determined by cross-correlation analysis. Eur J Neurosci 2:588–606PubMedCrossRefGoogle Scholar
  11. Engel AK, Kreiter AK, König P, Singer W (1991a) Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc Natl Acad Sci USA 88:6048–6052PubMedCrossRefGoogle Scholar
  12. Engel AK, König P, Singer W (1991b) Direct physiological evidence for scene segmentation by temporal coding. Proc Natl Acad Sci USA 88:9136–9140PubMedCrossRefGoogle Scholar
  13. Engel AK, König P, Kreiter AK, Schillen TB, Singer W (1992) Temporal coding in the visual cortex: new vistas on integration in the nervous system. Trends Neurosci 15:218–226PubMedCrossRefGoogle Scholar
  14. Flor H, Hoffmann D, Strove M, Diesch E (2004) Auditory discrimination training for the treatment of tinnitus. Appl Psychophysiol Biofeedback 29:113–120PubMedCrossRefGoogle Scholar
  15. Fries P, Reynolds JH, Rorie AE, Desimone R (2001) Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291:1560–1563PubMedCrossRefGoogle Scholar
  16. Gray CM, Singer W (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–1702PubMedCrossRefGoogle Scholar
  17. Gray CM, König P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337PubMedCrossRefGoogle Scholar
  18. Gruber T, Müller MM, Keil A, Elbert T (1999) Selective visual-spatial attention alters induced gamma band responses in the human EEG. Clin Neurophysiol 110:2074–2085PubMedCrossRefGoogle Scholar
  19. Hebb DO (1949) The organization of behavior: a neuropsychological theory. Wiley, New YorkGoogle Scholar
  20. Heller AJ (2003) Classification and epidemiology of tinnitus. Otolaryngol Clin North Am 36:239–248PubMedCrossRefGoogle Scholar
  21. Junghöfer M, Elbert T, Leiderer P, Berg P, Rockstroh B (1997) Mapping EEG-potentials on the surface of the brain: a strategy for uncovering cortical sources. Brain Topogr 9:203–217PubMedCrossRefGoogle Scholar
  22. Keil A, Müller MM, Ray WJ, Graber T, Elbert T (1999) Human gamma band activity and perception of a gestalt. J Neurosci 19:7152–7161PubMedGoogle Scholar
  23. Keil A, Graber T, Müller MM (2001) Functional correlates of macroscopic high-frequency brain activity in the human visual system. Neurosci Biobehav Rev 25:527–534PubMedCrossRefGoogle Scholar
  24. Kreiter AK, Singer W (1992) Oscillatory neuronal responses in the visual cortex of the awake macaque monkey. Eur J Neurosci 4:369–375PubMedCrossRefGoogle Scholar
  25. König O, Schaette R, Kempter R, Gross M (2006) Course of hearing loss and occurrence of tinnitus. Hear Res 221:59–64PubMedCrossRefGoogle Scholar
  26. Lee Y, Bae S, Lee S, Lee J, Lee K, Kim M, Kim Y, Baik S, Woo S, Chang Y (2007) Evaluation of white matter structures in patients with tinnitus using diffusion tensor imaging. J Clin Neurosci 14:515–519PubMedCrossRefGoogle Scholar
  27. Logothetis NK (2007) The ins and outs of fMRI signals. Nat Neurosci 10:1230–1232PubMedCrossRefGoogle Scholar
  28. Melloni L, Molina C, Pena M, Torres D, Singer W, Rodriguez E (2007) Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27:2858–2865PubMedCrossRefGoogle Scholar
  29. Michalski A, Kossut M, Turlejski K, Chmielowska J (1983) Responses of area 17 neurons in cats binocularly deprived by rearing in hoods. Acta Neurobiol Exp (Wars) 43:263–272Google Scholar
  30. Miller R (2007) Theory of the normal waking EEG: from single neurones to waveforms in the lpha, beta and gamma frequency ranges. Int J Psychophysiol 64:18–23PubMedCrossRefGoogle Scholar
  31. Müller MM, Bosch J, Elbert T, Kreiter A, Sosa MV, Sosa PV, Rockstroh B (1996) Visually induced gamma-band responses in human electroencephalographic activity — a link to animal studies. Exp Brain Res 112:96–102PubMedCrossRefGoogle Scholar
  32. Munk MHJ, Nowak LG, Bullier J (1993) Spatio-temporal response properties and interactions of neurons in areas VI and V2 of the monkey. Abstr Soc Neurosci 19:179.3Google Scholar
  33. Pantev C, Eulitz C, Elbert T, Hoke M (1994) The auditory evoked sustained field: origin and frequency dependence. Electroencephalogr Clin Neurophysiol 90:82–90PubMedCrossRefGoogle Scholar
  34. Plis SM, George JS, Jun SC, Ranken DM, Volegov PL, Schmidt DM (2007) Probabilistic forward model for electroencephalography source analysis. Phys Med Biol 52:5309–5327PubMedCrossRefGoogle Scholar
  35. Pulvermüller F, Keil A, Elbert T (1999) High-frequency brain activity: perception or active memory? Trends Cogn Sci 3:250–252PubMedCrossRefGoogle Scholar
  36. Saunders JC (2007) The role of central nervous system plasticity in tinnitus. J Commun Disord 40:313–334PubMedCrossRefGoogle Scholar
  37. Schlee W, Weisz N, Dohrmann K, Hartmann T, Elbert T (2007) Unravelling the tinnitus distress network using single trial auditory steady-state responses. Int Congr Ser 1300:73–76CrossRefGoogle Scholar
  38. Siegel M, König P (2003) A functional gamma-band defined by stimulus-dependent synchronization in area 18 of awake behaving cats. J Neurosci 23:4251–4260PubMedGoogle Scholar
  39. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedCrossRefGoogle Scholar
  40. Supp GG, Schlögl A, Trujillo-Barreto N, Müller MM, Gruber T (2007) Directed cortical information flow during human object recognition: analyzing induced EEG gamma-band responses in brain’s source space. PLoS One 2:e684PubMedCrossRefGoogle Scholar
  41. Ts’o DY, Gilbert CD, Wiesel TN (1986) Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis. J Neurosci 6:1160–1170PubMedGoogle Scholar
  42. Varela F, Lachaux JP, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRefGoogle Scholar
  43. von der Malsburg C (1981) The correlation theory of brain function, p 81Google Scholar
  44. von der Malsburg C, Schneider W (1986) A neural cocktail-party processor. Biol Cybern 54:29–40PubMedCrossRefGoogle Scholar
  45. Weisz N, Moratti S, Meinzer M, Dohrmann K, Elbert T (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2(6):e153PubMedCrossRefGoogle Scholar
  46. Weisz N, Hartmann T, Dohrmann K, Schlee W, Norena A (2006) High-frequency tinnitus without hearing loss does not mean absence of deafferentation. Hear Res 222:108–114PubMedCrossRefGoogle Scholar
  47. Weisz N, Dohrmann K, Elbert T (2007a) The relevance of spontaneous activity for the coding of the tinnitus sensation. Prog Brain Res 166:61–70PubMedCrossRefGoogle Scholar
  48. Weisz N, Müller S, Schlee W, Dohrmann K, Hartmann T, Elbert T (2007b) The neural code of auditory phantom perception. J Neurosci 27:1479–1484PubMedCrossRefGoogle Scholar
  49. Womelsdorf T, Schoffelen J, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316: 1609–1612PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thomas Hartmann
    • 1
  • Nathan Weisz
    • 1
  • Winfried Schlee
    • 1
  • Thomas Elbert
    • 1
    Email author
  1. 1.Department of PsychologyUniversity of KonstanzKonstanzGermany

Personalised recommendations