Advertisement

Neural Representation of Time and Timing Processes

  • Elsbieta Szelag
  • Joanna Dreszer
  • Monika Lewandowska
  • Aneta Szymaszek
Part of the On Thinking book series (ONTHINKING, volume 1)

Abstract

This chapter reviews existing studies on neural representation of time and timing processes. New findings in clinical neuropsychology, functional magnetic resonance imaging, electrophysiology, and psychophysics are presented to explain how the temporal information is processed within our brains. The literature data are illustrated with results of our findings. We outline the taxonomy of time perception to provide a background for discussing existing experimental studies. Evidence has indicated that similar brain structures are involved in both subsecond and suprasecond timing, implicating that temporal processing in these two ranges is probably mediated by common neural networks.

Keywords

Time Perception Neural Representation Timing Mechanism Temporal Perception Processing Platform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ba§ar-Eroglu C, Strüber D, Schürmann M, Stadler M, Ba§ar E (1996) Gamma-band responses in the brain: a short review of psychophysiological correlates and functional significance. Int J Psychophysiol 24:101–112CrossRefGoogle Scholar
  2. Block RA, Zakay D (1996) Models of psychological time revisited. In Helfrich H (ed) Time and mind. Hogrefe & Huber, Göttingen, pp 171–195Google Scholar
  3. Efron R (1963) Temporal perception, aphasia and déjá vu. Brain 86:403–424PubMedCrossRefGoogle Scholar
  4. Elbert T, Ulrich R, Rockstroh B, Lutzenberger W (1991) The processing of temporal intervals reflected by CNV-like brain potentials. Psychophysiology 28:648–655PubMedCrossRefGoogle Scholar
  5. Farmer ME, Klein RM (1995) The evidence for a temporal processing deficit linked to dyslexia: a review. Psychon Bull Rev 2:460–493Google Scholar
  6. Fink M, Churan J, Wittmann M (2005) Assessment of auditory temporal order thresholds — a comparison of different measurement procedures and the influence of age and gender. Restor Neurol Neurosci 23:1–16Google Scholar
  7. Fink M, Ulbrich P, Churan J, Wittmann M (2006) Stimulus-dependent processing of temporal order. Behav Process 71:344–352CrossRefGoogle Scholar
  8. Fraisse P (1984) Perception and estimation of time. Annu Rev Psychol 35:1–36PubMedCrossRefGoogle Scholar
  9. Hirsh IJ, Sherrick CE (1961) Perceived order in different sense modalities. J Exp Psychol 62: 423–432PubMedCrossRefGoogle Scholar
  10. Ivry RB, Keele SW (1989) Timing functions of the cerebellum. J Cogn Neurosci 1:136–152CrossRefGoogle Scholar
  11. Ivry RB, Richardson TC (2002) Temporal control and coordination: the multiple timer model. Brain Cognit 48:117–132CrossRefGoogle Scholar
  12. Joliot M, Ribary U, Llinas R (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91:11748–11751PubMedCrossRefGoogle Scholar
  13. Lewandowska M, Bekisz M, Szymaszek A, Wrobel A, Szelag E (2008) Towards electrophysiological correlates of auditory perception of temporal order. Neurosci Lett. 437:139–143PubMedCrossRefGoogle Scholar
  14. Lewis PA, Miall RC (2003a) Brain activation patterns during measurement of sub-and suprasecond intervals. Neuropsyychologia 41:1583–1592CrossRefGoogle Scholar
  15. Lewis PA, Miall RC (2003b) Distinct system for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255PubMedCrossRefGoogle Scholar
  16. Lewis PA, Miall RC (2006) A right hemispheric prefrontal system for cognitive time measurement. Behav Process 71:226–234CrossRefGoogle Scholar
  17. Malapani C, Deweer B, Gibbon J (2002) Separating storage from retrieval dysfunction of temporal memory in Parkinson’s disease. J Cogn Neurosci 14:311–322PubMedCrossRefGoogle Scholar
  18. Matsuzaka Y, Aizawa H, Tanji J (1992) A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: neuronal activity during a learned motor task. J Neurophysiol 68:653–662PubMedGoogle Scholar
  19. Meck WH (1996) Neuropharmacology of timing and time perception. Cogn Brain Res 3:227–242CrossRefGoogle Scholar
  20. Merzenich MM, Jenkins WM, Johnston P, Schreiner C, Miller SL, Tallal P (1996) Temporal processing deficits of language-learning impaired children ameliorated by training. Science 271:81–84PubMedCrossRefGoogle Scholar
  21. Pastor MA, Artieda J, Jahanshahi M, Obeso JA (1992) Time estimation and reproduction is abnormal in Parkinson’s disease. Brain 115:211–225PubMedCrossRefGoogle Scholar
  22. Pöppel E (1971) Oscillations as possible basis for time perception. Stud Gen 24:85–107Google Scholar
  23. Pöppel E (1994) Temporal mechanisms in perception. Int Rev Neurobiol 37:185–202PubMedCrossRefGoogle Scholar
  24. Pöppel E (1997) A hierarchical model of temporal perception. Trends Cogn Sci 1:56–61CrossRefGoogle Scholar
  25. Pöppel E (2004) Lost in time: a historical frame, elementary processing units and the 3-s window. Acta Neurobiol Exp 64:295–301Google Scholar
  26. Rammsayer T (1999) Neuropharmacological evidence for different timing mechanisms in humans. Q J Exp Psychol B Comp Physiol Psychol 52:273–286Google Scholar
  27. Rubia K, Smith A (2004) The neural correlates of cognitive time management: a review. Acta Neurobiol Exp 64:329–340Google Scholar
  28. Rubia K, Schuri U, Cramon DY, Pöppel E (1997) Time estimation as a neuronal network property: a lesion study. Neuroreport 8:1273–1276PubMedCrossRefGoogle Scholar
  29. Swisher L, Hirsh IJ (1972) Brain damage and the ordering of two temporally successive stimuli. Neuropsychologia 10:137–152PubMedCrossRefGoogle Scholar
  30. Szelag E (1997) Temporal integration of the brain as studied with the metronome paradigm. In: Atmanspacher H, Ruhnau E (eds) Time, temporality, now. Springer, Berlin Heidelberg New York, pp 121–132Google Scholar
  31. Szelag E, Pöppel E (2000) Temporal perception: a key to understanding language. Behav Brain Sci 23:52CrossRefGoogle Scholar
  32. Szelag E, von Steinbüchel N, Pöppel E (1997) Temporal processing disorders in patients with Broca’s aphasia. Neurosci Lett 10:33–36CrossRefGoogle Scholar
  33. Szelag E, Kowalska J, Galkowski T, Pöppel E (2004a) Temporal processing deficits in high functioning children with autism. Br J Psychol 95:269–282PubMedCrossRefGoogle Scholar
  34. Szelag E, Kolodziejczyk I, Kanabus M, Szuchnik J, Senderski A (2004b) Deficits of nonverbal auditory perception in postlingually deaf humans using cochlear implants. Neurosci Lett 355: 49–52PubMedCrossRefGoogle Scholar
  35. Szelag E, Kanabus M, Kolodziejczyk I, Kowalska J, Szuchnik J (2004c) Individual differences in temporal information processing in humans. Acta Neurobiol Exp 64:349–366Google Scholar
  36. Szymaszek A, Szelag E, Sliwowska M (2006) Auditory perception of temporal order in humans: the effect of age, gender listener practice and stimulus presentation mode. Neurosci Lett 403:190–194PubMedCrossRefGoogle Scholar
  37. Szymaszek A, Sereda M, Pöppel E, Szelag E (2008) Individual differences in the perception of temporal order: the effect of age and cognition. Cogn Neuropsychol (in preparation)Google Scholar
  38. Tallal P, Newcombe F (1978) Impairment of auditory perception and language comprehension in ysphasia. Brain Lang 5:13–24PubMedCrossRefGoogle Scholar
  39. Tallal P, Miller SL, Bedi G, Byma G, Wang X, Nagarajan SS, Schreiner C, Jenkins WM, Merzenich MM (1996) Language comprehension in language-learning impaired children improved with acoustically modified speech. Science 271:81–84PubMedCrossRefGoogle Scholar
  40. Tallal P, Merzenich MM, Miller S, Jenkins W (1998) Language learning impairments: integrating basic science, technology, and remediation. Exp Brain Res 123:210–219PubMedCrossRefGoogle Scholar
  41. von Steinbüchel N, Wittmann M, Strasburger H, Szelag E (1999) Auditory temporal order judgement is impaired in patients with cortical lesions in posterior regions of the left hemisphere. Neurosci Lett 264:168–171CrossRefGoogle Scholar
  42. Wittmann M (1999) Time perception and temporal processing levels of the brain. Chronobiol Int 16:17–32PubMedCrossRefGoogle Scholar
  43. Wittmann M, Fink M (2004) Time and language-critical remarks on diagnosis and training methods of temporal-order judgement. Acta Neurobiol Exp 64:341–348Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Elsbieta Szelag
    • 1
  • Joanna Dreszer
    • 1
  • Monika Lewandowska
    • 1
  • Aneta Szymaszek
    • 1
  1. 1.Laboratory of NeuropsychologyNencki Institute of Experimental BiologyWarsawPoland

Personalised recommendations