Neural Correlates of Thinking

  • Eduard KraftEmail author
  • Balázs Gulyás
  • Ernst Pöppel
Part of the On Thinking book series (ONTHINKING, volume 1)

In April 1918, Korbinian Brodmann moved to Munich to join the Deutsche Forschungsanstalt für Psychiatrie, the first interdisciplinary brain research institute in the world.1 Brodmann published what is now regarded as one of the major “classics” of neurological literature, a monograph entitled Vergleichende Lokalisationslehre der Grosshirnrinde. (An English translation by Laurence Garey was published in 1994: Brodmann’s Localisation in the Cerebral Cortex.) Although the cortical map Brodmann described was purely based on histomorphological criteria, it was an important landmark for future work on functional localization.

From our present perspective Brodmann’s work remains a seminal landmark for localizing activity in neuroimaging research, since most functional imaging studies still refer to Brodmann’s areas when they describe the localization of peak activities and the extent of the activated fields in the human brain.


Positron Emission Tomography Neural Correlate Cognitive Neuroscience Deductive Reasoning Neuroimaging Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barbey A, Barsalou LW (2006) Intelligence: models of reasoning. In: Squire L, Albright T, Bloom F, Gage F, Spitzer N (eds) New encyclopedia of neuroscience. Elsevier, OxfordGoogle Scholar
  2. Bennett MR, Hacker PMR (2003) Philosophical foundations of neuroscience. Blackwell, OxfordGoogle Scholar
  3. Braine MDS, O’Brien DP (eds) (1998) Mental logic. Erlbaum, MahwahGoogle Scholar
  4. Broca P (1863) Localization of cerebral functions. Location of articulate language. Bulletin of the Society of Anthropology (Paris) 4:200–203Google Scholar
  5. Broca P (1865) On the location of the faculty of articulate language in the left hemisphere of the brain. Bulletin of the Society of Anthropology 6:377–393Google Scholar
  6. Cabeza R, Kingstone A (eds) (2006) Handbook of Functional Neuroimaging of Cognition. MIT Press, CambridgeGoogle Scholar
  7. Danek A (2006) Bernhard von Gudden, neuro-ophthalmology and the Munich School of Neuroanatomy and Psychiatry. Strabismus 4:211–216CrossRefGoogle Scholar
  8. Flourens JP (1825) Experiences sur le système nerveux. ParisGoogle Scholar
  9. Frackowiak RSJ, Ashburner JT, Penny WD, Zeki S (2004) Human Brain Function. Academic, New YorkGoogle Scholar
  10. Friston K (2002) Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annu Rev Neurosci 25:221–250PubMedCrossRefGoogle Scholar
  11. Fritsch E, Hitzig GT (1870) Über die elektrische Erregbarkeit des Grosshirns. Archiv für Anatomie, Physiologie und wissenschaftliche Medicin. Arch. F. Anat., Physiol. und wissenschaftl. Mediz., Leipzig, 37:300–332Google Scholar
  12. Goel V (2004) Can there be a cognitive neuroscience of central cognitive systems? In: Johnson D, Erneling C (eds) Mind as a scientific object: between brain and culture. Oxford University Press, OxfordGoogle Scholar
  13. Holmes G (1945) Ferrier lecture. The organisation of the visual cortex in man. Proc R Soc Ser B 132:348–361CrossRefGoogle Scholar
  14. Holyoak KJ, Morrison RG (eds) (2005) The Cambridge handbook of thinking and reasoning. Cambridge University Press, CambridgeGoogle Scholar
  15. Jasper H, Penfield W (1954) Epilepsy and the functional anatomy of the human brain. Little, Brown, BostonGoogle Scholar
  16. Johnson-Laird PN (1983) Mental models. Towards a cognitive science of language, inference and consciousness. Harvard University Press, CambridgeGoogle Scholar
  17. Kertész A (1994) Localization and neuroimaging in neuropsychology. Academic, San DiegoGoogle Scholar
  18. Kosslyn SM (1999) If neuroimaging is the answer, what is the question? Philos Trans R Soc Lond B Biol Sci 354:1283–1294PubMedCrossRefGoogle Scholar
  19. Lashley KS (1943) Studies of Cerebral Function in Learning. Journal of Comparative Neurology, volume 79Google Scholar
  20. Logothetis NK (2008) What we can do and what we cannot do with fMRI, Nature 453:869–878PubMedCrossRefGoogle Scholar
  21. Luria AR (1963) Restoration of function after brain injury. Pergamon, OxfordGoogle Scholar
  22. Luria AR (1970) Traumatic aphasia: its syndromes, psychology, and treatment, de Gruyter, BerlinGoogle Scholar
  23. McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182PubMedCrossRefGoogle Scholar
  24. Newell A, Simon HA (1972) Human problem solving. Prentice Hall, Englewood CliffsGoogle Scholar
  25. Pöppel E (1989) Taxonomy of the subjective: an evolutionary perspective. In: Brown JW (ed) Neuropsychology of visual perception. Erlbaum, HillsdaleGoogle Scholar
  26. Poppelreuter W (1917) Die psychischen Schädigungen durch Kopfschuß im Kriege 1914/17: mit besonderer Berücksichtigung der pathopsychologischen, pädagogischen, gewerblichen und sozialen Beziehungen, vol 1. Die Störungen der niederen und höheren Sehleistungen durch Verletzungen des Okzipitalhirns. LeipzigGoogle Scholar
  27. Poppelreuter W (1918) Die psychischen Schädigungen durch Kopfschuß im Kriege 1914/17: mit besonderer Berücksichtigung der pathopsychologischen, pädagogischen, gewerblichen und sozialen Beziehungen, vol 2. Die Herabsetzung der körperlichen Leistungsfähigkeit und des Arbeitswillens durch Hirnverletzung im Vergleich zu Normalen und Psychogenen. LeipzigGoogle Scholar
  28. Simon HA (1999) Problem solving. In: Wilson RA, Keil FC (eds) The MIT encyclopedia of the cognitive sciences. MIT Press, Cambridge, 674–676Google Scholar
  29. Simon HAA (1999) Time for Talk and a Time for Silence. In: Streitz NA, Siegel J, Hartkopf V, Konomi S (eds) Cooperative Buildings, Integrating Information, Organization, and Architecture, Second International Workshop, CoBuild’99, Pittsburgh, USA, October 1–2, Proceedings. Lecture Notes in Computer Science 1670 Springer 1999Google Scholar
  30. Singer W(1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374PubMedCrossRefGoogle Scholar
  31. Tversky A, Kahneman D (1986) Rational Choice and the Framing of Decisions. Journal of Business, 59:251–278CrossRefGoogle Scholar
  32. Umilta C (2003) Modularity in neural systems and localization of function. In: Encyclopedia of cognitive science, vol III. Nature, LondonGoogle Scholar
  33. Uttal WR (2001) The new phrenology: the limits of localizing cognitive processes in the brain. MIT Press, CambridgeGoogle Scholar
  34. Wernicke C (1874) Der aphasische Symptomencomplex. Cohn & Weigert, Breslau. p. 72Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Parmenides Center for the Study of ThinkingParmenides FoundationMunichGermany
  2. 2.Department of Clinical Neuroscience, Psychiatry SectionKarolinska InstitutetStockholmSweden

Personalised recommendations