Advertisement

On Non-Commutative Analytic Spaces Over Non-Archimedean Fields

  • Y. Soibelman
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 757)

Abstract

We discuss examples of non-commutative spaces over non-archimedean fields. Those include non-commutative and quantum affinoid algebras, quantized K3 surfaces and quantized locally analytic p-adic groups. In the latter case we found a quantization of the Schneider–Teitelbaum algebra of locally analytic distributions by using the ideas of representation theory of quantized function algebras.

Keywords

Analytic Space Coherent Sheave Fukaya Category Analytic Torus Quantum Torus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Bosch, U. Güntzer, R. Remmert, Non-archimedean analysis. Springer-Verlag, (1984).Google Scholar
  2. 2.
    V. Berkovich, Spectral theory and analytic geometry over non-archimedean fields. AMS Math. Surveys and Monographs, n. 33, 1990.Google Scholar
  3. 3.
    V. Berkovich, Etale cohomology for non-Archimedean analytic spaces, Publ. Math. IHES 78 (1993), 5–161.zbMATHMathSciNetGoogle Scholar
  4. 4.
    V. Berkovich, Smooth p-adic analytic spaces are locally contractible, Inv. Math., 137 (1999), 1–84.zbMATHCrossRefMathSciNetADSGoogle Scholar
  5. 5.
    A. Connes, Non-commutative geometry, Academic Press, 1994.Google Scholar
  6. 6.
    V. Fock, A. Goncharov, Cluster ensembles, quantization and the dilogarithm, math.AG/0311245.Google Scholar
  7. 7.
    J. Fresnel, M. van der Put, Rigid analytic geometry and applications. Birkhauser, (2003).Google Scholar
  8. 8.
    M. Kontsevich, Y. Soibelman, Affine structures and non-archimedean analytic spaces, math.AG/0406564.Google Scholar
  9. 9.
    M. Kontsevich, Y. Soibelman, Homological mirror symmetry and torus fibrations, math.SG/0011041.Google Scholar
  10. 10.
    M. Kontsevich, A. Rosenberg, Non-commutative smooth spaces, math.AG/ 9812158.Google Scholar
  11. 11.
    L. Korogodsky, Y. Soibelman, Algebras of functions on quantum groups. I, Amer. Math. Soc., (1997).Google Scholar
  12. 12.
    Lapchik, personal communications, 2004–2005, see also www.allalapa.net
  13. 13.
    A. Rosenberg, Non-commutative algebraic geometry and representations of quantized algebras. Kluwer Academic Publishers, (1995).Google Scholar
  14. 14.
    A. Rosenberg, Y. Soibelman, Non-commutative analytic spaces, in preparation.Google Scholar
  15. 15.
    P. Schneider, J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. math. 153, 145–196 (2003).zbMATHCrossRefADSMathSciNetGoogle Scholar
  16. 16.
    Y. Soibelman, V. Vologodsky, Non-commutative compactifications and elliptic curves, math.AG/0205117, published in Int. Math.Res. Notes, 28 (2003).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of MathematicsKansas State UniversityManhattanUSA

Personalised recommendations