Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission

  • Leaf A. Jiang
  • Erich P. Ippen
  • Hiroyuki Yokoyama


Semiconductor mode-locked lasers are evaluated as pulse sources for high bit rate data transmission. This chapter describes the requirements of OTDM sources for high bit rate data transmission, compares various OTDM source technologies, describes three semiconductor mode-locked laser cavity designs, explains the impact of timing jitter and amplitude noise on OTDM performance, illustrates how to characterize noise of OTDM sources using rf and optical techniques, shows how to interpret the noise measurements, and finally discusses semiconductor mode-locked laser cavity optimizations that can achieve low noise performance.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Ludwig, S. Diez, A. Ehrhardt, L. Küller, W. Pieper, and H. G. Weber, “A tunable femtosecond modelocked semiconductor laser for applications in OTDM-systems,” IEICE Trans. Electron., E81-C, 140–145 (1998), IEICE transactions on electronics.Google Scholar
  2. 2.
    H. Yokoyama, “Highly stabilized mode-locked semiconductor diode lasers,” Rev. Laser Eng., 27, 750–755, 1999.Google Scholar
  3. 3.
    H. Yokoyama, “Highly reliable mode-locked semiconductor lasers,” IEICE Trans. Electron., E85-C(1), 27–36 (January 2002).Google Scholar
  4. 4.
    L. A. Jiang, M. E. Grein, E. P. Ippen, C. McNeilage, J. Searls, and H. Yokoyama, “Quantum-limited noise performance of a modelocked laser diode,” Opt. Lett., 27(1), 49–51 (2002).CrossRefADSGoogle Scholar
  5. 5.
    C.M. DePriest, T. Yilmaz, A. Braun, J. H. Abeles, and P. J. Delfyett Jr., “High-quality photonic sampling streams from a semiconductor diode ring laser,” IEEE J. Quant. Electron., 38(4), 380–389 (2002).CrossRefADSGoogle Scholar
  6. 6.
    U. Feiste, R. Ludwig, C. Schubert, J. Berger, C. Schmidt, H. G. Weber, B. Schmauss, A. Munk, B. Buchold, D. Briggmann, F. Kueppers, and F. Rumpf, “160 Gbit/s transmission over 116 km field-installed fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM,” Electron. Lett., 37(7), 443–445 (March 2001).CrossRefGoogle Scholar
  7. 7.
    M. Nakazawa, T. Yamamoto, and K. R. Tamura, “Ultrahigh-speed OTDM transmission beyond 1 Ter-bit-per-second using a femtosecond pulse train,” IEICE Trans. Electron., E85-C(1), 117–125 (2002).Google Scholar
  8. 8.
    J. Zhang, M. Yao, X. Chen, L. Xu, M. Chen, and Y. Gao, “Bit error rate analysis of OTDM system based on moment generation function,” J. Lightwave Technol., 18(11, pp. 1513–1518 (November 2000).CrossRefADSGoogle Scholar
  9. 9.
    K. S. Jepsen, H. N. Poulsen, A. T. Clausen, and K. E. Stubkjer, “Investigation of cascadability of add-drop multiplexers in OTDM systems,” in Proc. ECOC’98, 1998, vol. 1.Google Scholar
  10. 10.
    M. L. Nielsen, B.-E. Olsson, and D. J. Blumenthal, “Pulse extinction ratio improvement using SPM in an SOA for OTDM system applications,” IEEE Photon. Technol. Lett., 14(2), 245–247 (2002).CrossRefADSGoogle Scholar
  11. 11.
    E. Hashimoto, A. Takada, and Y. Katagiri, “High-frequency synchronized signal generation using semiconductor lasers,” IEEE Transactions on Microwave Theory and Techniques, 47(7), 1206–1218 (1999).CrossRefADSGoogle Scholar
  12. 12.
    I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, “Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing,” Opt. Quant. Electron., 33, 709–725 (2001).CrossRefGoogle Scholar
  13. 13.
    PriTel, Naperville, IL, USA, Datasheet for UOC series Ultrafast Optical Clocks.Google Scholar
  14. 14.
    Calmar Optcom, Sunnyvale, CA, USA, Datasheet for PSL series picosecond lasers, 2001.Google Scholar
  15. 15.
    GigaTera, Lerzenstrasse 16, CH-8953 Dietikron, Switzerland, Datasheet for ERGO pulse generating laser, September 2002.Google Scholar
  16. 16.
    Emmanuel Desurvire, Erbium-doped fiber amplifiers: principles and applications (John Wiley and Sons, New York, 1994).Google Scholar
  17. 17.
    A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fibre for application to 160 Gbit/s OTDM networks,” Electron. Lett., 8(35), 645–646 (1999).CrossRefGoogle Scholar
  18. 18.
    J. Li, A. Andrekson, and B. Bakhshi, “Direct generation of subpicosecond chirp-free pulses at 10 GHz from a nonpolarization maintaining actively mode-locked fiber ring laser,” IEEE Photon. Technol. Lett., 12(9), 1150–1152 (2000).CrossRefADSGoogle Scholar
  19. 19.
    B. Bakhshi and P. A. Andrekson, “40 GHz actively modelocked polarisation-maintaining erbium fibre ring laser,” Electron. Lett., 36(5), 411–413 (2000).CrossRefGoogle Scholar
  20. 20.
    T. F. Carruthers and I. N. Duling III, “10-GHz, 1.3 ps erbium fiber laser employing soliton pulse shortening,” Opt. Lett., 21(23), 1927–1929 (1996).ADSCrossRefGoogle Scholar
  21. 21.
    M. Nakazawa and E. Yoshida, “A 40-GHz 850-fs regeneratively FM mode-locked polarization-maintaining erbium fiber ring laser,” IEEE Photon. Technol. Lett., 12(12), 1613–1615 (2000).CrossRefADSGoogle Scholar
  22. 22.
    P. V. Mamyshev, S. V. Chernikov, and E. M. Dianov, “Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines,” IEEE J. Quant. Electron., 27(10), 2347–2355 (1991).CrossRefADSGoogle Scholar
  23. 23.
    T. E. Murphy, “10-GHz 1.3-ps pulse generation using chirped soliton compression in a Raman gain medium,” IEEE Photon Technol. Lett., 14(10), 1424–1426, (2002).CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    D. Lee, H. Yoon, and N. Park, “Extension of dispersion decreasing fiber — pulse shaping method for the optical time division multiplexing system source applications,” in CLEO Pacific Rim’99, 1999.Google Scholar
  25. 25.
    M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett., 31(9), 740–741 (1995).CrossRefADSGoogle Scholar
  26. 26.
    M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “1.2 ps pulses at low base repetition rates for 100 Gbit/s per channel optical communication networks,” Electron. Lett, 31(25), 2190–2191 (1995).CrossRefGoogle Scholar
  27. 27.
    S. V. Chernikov, J. R. Taylor, and R. Kashyap, “Comb-like dispersion-profiled fibre for soliton pulse-train generation,” Opt. Lett., 19(8), 539–541 (1994).ADSCrossRefGoogle Scholar
  28. 28.
    M. Guy, S. Chernikov, and R. Taylor, “Electroabsorption modulators for high speed ultrashort pulse generation and processing,” IEICE Trans. Electron., E81-C(2), 169–174 (1998).Google Scholar
  29. 29.
    Y. Matsui, M. D. Pelusi, and A. Suzuki, “Generation of 20-fs optical pulses from a gain-switched laser diode by a four-stage soliton compression technique,” IEEE Photon. Technol. Lett., 11(10), 1217–1219 (1999).CrossRefADSGoogle Scholar
  30. 30.
    H. Ohta, S. Nogiwa, and H. Chiba, “Generation of low timing jitter, sub-picosecond optical pulses using a gain-switched DFB-LD with CW light injection and a nonlinear optical loop mirror,” IEICE Trans. Electron., E81-C(2), 166–168 (1998).Google Scholar
  31. 31.
    K. A. Wiliams, I. H. White, D. Burns, and W. Sibbett, “Jitter reduction through feedback for picosecond pulsed InGaAsP lasers,” IEEE J. Quant. Electron., 32(11), 1988–1994 (1996).CrossRefADSGoogle Scholar
  32. 32.
    M. Jinno, “Correlated and uncorrelated timing jitter in gain-switched laser diodes,” IEEE Photon. Technol. Lett., 5(10), 1140–1143 (1993).CrossRefADSGoogle Scholar
  33. 33.
    Y. Arakawa, T. Sogawa, M. Nishioka, M. Tanaka, and H. Sakaki, “Picosecond pulse generation (< 1.8 ps) in a quantum well laser by a gain switching method,” Appl. Phys. Lett., 51(17), 1295–1297(1987).CrossRefADSGoogle Scholar
  34. 34.
    P. T. Ho, L. A. Glasser, E. P. Ippen, and H. A. Haus, “Picosecond pulse generation with a cw GaAlAs laser diode” Appl. Phys. Lett., 33(3), 241–242 (1978).CrossRefADSGoogle Scholar
  35. 35.
    R. Ludwig and A. Ehrhardt, “Turn-key-ready wavelength-, repetition rate-and pulsewidth-tunable femtosecond hybrid modelocked semiconductor laser,” Electron. Lett., 31(14), 1165–1167 (1995).CrossRefGoogle Scholar
  36. 36.
    Y. Hashimoto, H. Yamada, R. Kuribayashi, and H. Yokoyama, “40-GHz tunable optical pulse generation from a highly-stable external-cavity mode-locked semiconductor laser module,” in OFC’02, OSA, 2002.Google Scholar
  37. 37.
    K. Sato, A. Hirano, N. Shimizu, and I. Kotaka, “High-frequency and low-jitter optical pulse generation using semiconductor mode-locked lasers,” IEEE Transactions on Microwave Theory and Techniques, 47(7), 1251–1256 (1999).CrossRefADSGoogle Scholar
  38. 38.
    K. Sato, I. Kotaka, Y. Kondo, and M. Yamamoto, “Actively mode-locked strained-InGaAsP multiquantum-well lasers integrated with electroabsorption modulators and distributed Bragg reflectors” IEEE J. Select. Topics Quant. Electron., 2(3), 557–565 (1996).CrossRefGoogle Scholar
  39. 39.
    K. Sato, K. Wakita, I. Kotaka, Y. Kondo, M. Yamamoto, and A. Takada, “Monolithic strained-InGaAsP multiple-quantum-well lasers with integrated electroabsorption modulators for active mode locking,” Appl. Phys. Lett., 65(1), 1–3 (1994).CrossRefADSGoogle Scholar
  40. 40.
    R. S. Tucker, U. Koren, G. Raybon, C. A. Burrus, B. I. Miller, T. L. Koch, G. Eisenstein, and A. Shahar, “40 Ghz active mode-locking in a 1.5 µm monolithic extended-cavity laser,” Electron. Lett., 25(10), 621–622 (1989).CrossRefGoogle Scholar
  41. 41.
    M. C. Wu, Y. K. Chen, T. Tanbun-Ek, R. A. Logan, M. A. Chin, and G. Raybon, “Transform-limited 1.4 ps optical pulses from a monolithic colliding-pulse mode-locked quantum well laser,” Appl. Phys. Lett., 57(8), 759–761 (1990).CrossRefADSGoogle Scholar
  42. 42.
    Y. K. Chen and M. C. Wu, “Monolithic colliding-pulse mode-locked quantum-well lasers,” IEEE J. Quant. Electron., 28(10), 2176–2185 (1992).CrossRefADSGoogle Scholar
  43. 43.
    P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. A. Newkirk, M.-D. Chien, B. Tell, and C. A. Burrus, “Monolithic semiconductor soliton transmitter,” J. Lightwave Technol., 13(2), 297–301 (1995).CrossRefADSGoogle Scholar
  44. 44.
    P. B. Hansen, G. Raybon, U. Koren, B. I. Miller, M. G. Young, M. Chien, C. A. Burrus, and R. C. Alferness, “5.5-mm long InGaAsP monolithic extended-cavity laser with an integrated bragg-reflector for active mode-locking,” IEEE Photon. Technol. Lett., 4(3), 215–217 (1992).CrossRefADSGoogle Scholar
  45. 45.
    P. A. Morton, J. E. Bowers, L. A. Koszi, M. Soler, J. Lopata, and D. P. Wilt, “Monolithic hybrid mode-locked 1.3 µm semiconductor lasers,” Appl. Phys. Lett, 56(2), 111–113 (1990).CrossRefADSGoogle Scholar
  46. 46.
    D. J. Derickson, R. J. Helkey, A. Mar, J. R. Karin, J. G. Wasserbauer, and J. E. Bowers, “Short pulse generation using multisegment mode-locked semiconductor lasers,” IEEE J. Quant. Electron., 28(10), 2186–2202 (1992).CrossRefADSGoogle Scholar
  47. 47.
    M. J. Guy, S. V. Chernikov, and J. R. Taylor, “A duration-tunable, multiwavelength pulse source for OTDM and WDM communications,” IEEE Photon. Technol. Lett., 9(7), 1017–1019(1997).CrossRefADSGoogle Scholar
  48. 48.
    M. D. Pelusi, Y. Matsui, and A. Suzuki, “Frequency tunable femtosecond pulse generation from an electroabsorption modulator by enhanced higher order soliton compression in dispersion decreasing fibre,” Electron. Lett., 35(9), 734–735 (1999).CrossRefGoogle Scholar
  49. 49.
    P. C. Reeves-Hall and J. R. Taylor, “Wavelength and duration tunable subpicosecond source using adiabatic Raman compression,” Electron. Lett., 37(7), 417–418 (2001).CrossRefGoogle Scholar
  50. 50.
    E. Yoshida and Nakazawa M., “A 40-GHz 0.9-ps regeneratively mode-locked fiber laser with a tuning range of 1530–1560,” IEEE Photon. Technol. Lett., 11(12), 1587–1589 (December 1999).CrossRefADSGoogle Scholar
  51. 51.
    E. Yoshida and Nakazawa M., “Measurement of the timing jitter and pulse energy fluctuation of a PLL regeneratively mode-locked fiber laser,” IEEE Photon. Technol. Lett., 11(5), 548–550 (May 1999).CrossRefADSGoogle Scholar
  52. 52.
    E. Yoshida and Nakazawa M., “Wavelength tunable 1.0 ps pulse generation in 1.530–1.555 µm region from PLL regeneratively modelocked fibre laser,” Electron. Lett., 34(18), 1753–1754 (1998).CrossRefGoogle Scholar
  53. 53.
    A. E. Siegman, Lasers (University Science Books, Mill Valley, CA, 1986).Google Scholar
  54. 54.
    H. Yokoyama, T. Shimizu, T. Ono, and Y. Yano, “Synchronous injection locking operation of monolithic mode-locked diode lasers,” Opt. Rev., 2, 85–88 (1995).CrossRefGoogle Scholar
  55. 55.
    I. Ogura, T. Sasaki, H. Yamada, and H. Yokoyama, “Precise sdh frequency operation of monolithic laser diodes with frequency tuning function,” Electron. Lett., 35(15), 1275–1277 (1999).CrossRefGoogle Scholar
  56. 56.
    K. Sato, I. Hiroyuki, I. Kotaka, K. Yasuhiro, and M. Yamamoto, “Frequency range extension of actively mode-locked lasers integrated with electroabsorption modulators using chirped gratings,” IEEE J. Select. Topics Quant. Electron., 3(2), 250–255 (1997).CrossRefGoogle Scholar
  57. 57.
    J. E. Bowers, P. A. Morton, A. Mar, and S. W. Corzine, “Actively mode-locked semiconductor lasers,” IEEE J. Quant. Electron., 25(6), 1426–1439 (1989).CrossRefADSGoogle Scholar
  58. 58.
    C. M. DePriest, T. Yilmaz, P. J. Delfyett Jr., S. Etemad, A. Braun, and J. H. Abeles, “Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring,” Opt. Lett., 27(9), 719–721 (2002).CrossRefADSGoogle Scholar
  59. 59.
    G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett., 18(2), 107–109 (1993).ADSCrossRefGoogle Scholar
  60. 60.
    K. K. Gupta, N. Onodera, and M. Hyodo, “Technique to generate equal amplitude, higher-order optical pulses in rational harmonically modelocked fibre ring lasers,” Electron. Lett., 37(15), 948–950 (2001).CrossRefGoogle Scholar
  61. 61.
    T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling III, “Phase noise measurements of ultrastable 10 GHz harmonically modelocked fibre laser,” Electron. Lett., 35(9), 720–721 (1999).CrossRefGoogle Scholar
  62. 62.
    T. Yilmaz, C. M. DePriest, and P. J. Delfyett Jr., “Complete noise characterisation of external cavity semiconductor laser hybridly modelocked at 10 GHz,” Electron. Lett., 37(22), 1338–1339 (2001).CrossRefGoogle Scholar
  63. 63.
    T. Yamamoto, L. K. Oxenlowe, C. Schmidt, C. Schubert, E. Hilliger, U. Feiste, J. Berger, R. Ludwig, and H. G. Weber, “Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch baseed on semiconductor optical amplifier,” Electron. Lett., 37(8), 509–510 (2001).CrossRefGoogle Scholar
  64. 64.
    D. T. L. Tong, K.-L. Deng, B. Mikkelsen, G. Raybon, K. F. Dreyer, and J. E. Johnson, “160 Gbit/s clock recovery using electroabsorption modulator-based phase-locked loop,” Electron. Lett., 36(23), 1951–1952 (2000).CrossRefGoogle Scholar
  65. 65.
    D. J. Derickson, A. Mar, and J. E. Bowers, “Residual and absolute timing jitter in actively mode-locked semiconductor lasers,” Electron. Lett., 26(24), 2026–2028 (November 1990).CrossRefGoogle Scholar
  66. 66.
    W. Ng, R. Stephens, D. Persechini, and K. V. Reddy, “Ultra-low jitter modelocking of er-fibre laser at 10 GHz and its application in photonic sampling for analogue-to-digital conversion,” Electron Lett., 37, 113–115 (2001).CrossRefGoogle Scholar
  67. 67.
    F. Rana, H. L. T. Lee, M. E. Grein, L. A. Jiang, and R. J. Ram, “Characterization of the noise and correlations in harmonically mode-locked lasers,” to be published in JOS A B.Google Scholar
  68. 68.
    L. A. Coldren and S. W. Corzine, Diode lasers and photonic integrated circuits (John Wiley and Sons, New York, 1995).Google Scholar
  69. 69.
    D. A. Leep and D. A. Holm, “Spectral measurement of timing jitter in gain-switched semiconductor lasers,” Appl. Phys. Lett., 60(20), 2451–2453 (1992).CrossRefADSGoogle Scholar
  70. 70.
    M. C. Gross, M. Hanna, K. M. Patel, and S. E. Ralph, “Spectral method for the simultaneous determination of uncorrelated and correlated amplitude and timing jitter,” Appl. Phys. Lett., 80(20), 3694–3696 (2002).CrossRefADSGoogle Scholar
  71. 71.
    D. von der Linde, “Characterization of noise in continuously operating mode-locked lasers,” Appl. Phys. B, 39, 201–217 (1986).CrossRefADSGoogle Scholar
  72. 72.
    Ursula Keller, Kathryn D. Li, Mark Rodwell, and David M. Bloom, “Noise characterization of femtosecond fiber raman soliton lasers,” IEEE Journal of Quantum Electronics, 25(3), 280–288 (March 1989).CrossRefADSGoogle Scholar
  73. 73.
    Blake Peterson, “Spectrum analysis, application note 150,” Tech. Rep., Agilent Technologies, 1989.Google Scholar
  74. 74.
    L. A. Jiang, M. E. Grein, S. T. Wong, H. A. Haus, and E. P. Ippen, “Measuring timing jitter with optical cross-correlations,” submitted to IEEE J. Quant. Electron.Google Scholar
  75. 75.
    S. A. Crooker, F. D. Betz, J. Levy, and D. D. Awschalom, “Femtosecond synchronization of two passively mode-locked Ti:sapphire lasers,” Rev. Sci. Instrum., 67(6), 2068–2071 (June 1996).CrossRefADSGoogle Scholar
  76. 76.
    L. A. Jiang, Ultralow-noise modelocked lasers, Ph.D. thesis, MIT, 2002.Google Scholar
  77. 77.
    M. E. Grein, L. A. Jiang, Y. Chen, H. A. Haus, and E. P. Ippen, “Timing restoration dynamics in an actively mode-locked fiber ring laser,” Opt. Lett., 24(23), 1687–1689 (1999).ADSCrossRefGoogle Scholar
  78. 78.
    L. A. Jiang, K. S. Abedin, M. E. Grein, and E. P. Ippen, “Retiming dynamics of a mode-locked semiconductor laser,” Electron. Lett., 38(22), 1446–1447 (2002).CrossRefGoogle Scholar
  79. 79.
    L. A. Jiang, M. E. Grein, and E. P. Ippen, “Region of validity for residual phase noise measurements of actively modelocked lasers,” submitted to Electron. Lett.Google Scholar
  80. 80.
    H. Shi, D. Cohen, J. Barton, M. Majewski, L. A. Coldren, M. C. Larson, and G. A. Fish, “Relative intensity noise measurements of a widely tunable sampled-grating DBR laser,” IEEE Photon. Technol. Lett., 14(6), 759–761 (2002).CrossRefADSGoogle Scholar
  81. 81.
    R. P. Scott, C. Langrock, and B. H. Kolner, “High-dynamic-range laser amplitude and phase noise measurement techniques,” IEEE. J. Select. Topics Quant. Electron., 7(4), 641–655 (2001).CrossRefGoogle Scholar
  82. 82.
    M. E. Grein, H. A. Haus, L. A. Jiang, and E. P. Ippen, “Action on pulse position and momentum using dispersion and phase modulation,” Opt. Express, 8(12), 664–669 (2001).ADSCrossRefGoogle Scholar
  83. 83.
    L. A. Jiang, M. E. Grein, H. A. Haus, E. P. Ippen, and H. Yokoyama, “Timing jitter eater for optical pulse trains,” Opt. Lett., 28(2), 78–80, 2003.CrossRefADSGoogle Scholar
  84. 84.
    L. Mollenauer and C. Xu, “Time-lens timing-jitter compensator in ultra-long haul dwdm dispersion managed soliton transmissions,” in CLEO’02 Postdeadline Papers, 2002.Google Scholar
  85. 85.
    Thomas R. Clark Irl N. Duling III, Robert P. Moeller, “Active filtering of the amplitude noise of a mode-locked fiber laser,” in Conference on Lasers and Electro-Optics, San Francisco, California, USA, May 2000, OSA.Google Scholar

Copyright information

© Springer Science+Business Media Inc. 2005

Authors and Affiliations

  • Leaf A. Jiang
    • 1
  • Erich P. Ippen
    • 1
  • Hiroyuki Yokoyama
    • 2
  1. 1.Research Laboratories of ElectronicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.New Industry Creation Hatchery Center (NICHe)Tohoku UniversitySendai, MiyagiJapan

Personalised recommendations