Nanoscale Mechanisms for Assembly of Biomaterials

  • Zhijie Sui
  • William L. MurphyEmail author


Non-covalent interactions are a ubiquitous mechanism directing assembly of natural materials. Similarly, these types of interactions have become an important component of emerging approaches in biomaterials science. In view of the emerging importance of bio-inspired materials in medical applications, this chapter will be focused on describing the fundamentals of intermolecular interactions and their applications in biomaterials science. The particular focus will be on processes and structures that mimic the natural ECM.


tissue engineering bioinspired biomimetic self-assembly scaffold 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alberts, B., A. Johnson, J. Lewis, M. Raff, K. Roberts and P. Walter. Molecular Biology of the Cell, New York: Garland Science, (2004).Google Scholar
  2. Alivisatos, A. P., K. P. Johnsson, X. Peng, T. E. Wilson, C. J. Loweth, M. P. Bruchez, Jr. and P. G. Schultz. Nature 382: 609–611 (1996).PubMedGoogle Scholar
  3. Almany, L. and D. Seliktar. Biomaterials 26: 2467–2477 (2005).PubMedGoogle Scholar
  4. Altman, M., P. Lee, A. Rich and S. Zhang. Protein Science 9: 1095–1105 (2000).PubMedGoogle Scholar
  5. Bong, D. T. and M. R. Ghadiri. Angew. Chem. Int. Edit. 40: 2163–2166 (2001).Google Scholar
  6. Braun, E., Y. Eichen, U. Sivan and G. Ben-Yoseph. Nature 391: 775–778 (1998).PubMedGoogle Scholar
  7. Bucur, C. B., Z. Sui and J. B. Schlenoff, J. Am. Chem. Soc. 128: 13,690–13,691 (2006).PubMedGoogle Scholar
  8. Burley, S. K. and G. A. Petsko. Science 229: 23–28 (1985).PubMedGoogle Scholar
  9. Coffer, J. L., S. R. Bigham, X. Li, R. F. Pinizzotto, Y. G. Rho, R. M. Pirtle and I. L. Pirtle. Appl. Phys. Lett. 69: 3851–3853 (1996).Google Scholar
  10. Dalton, B. A., C. D. Mcfarland, P. A. Underwood and J. G. Steele. J. Cell. Sci. 108: 2083–2092 (1995).PubMedGoogle Scholar
  11. Dankers, P. Y., M. C. Harmsen, L. A. Brouwer, M. J. van Luyn and E. W. Meijer. Nat. Mater. 4: 568–574 (2005).PubMedGoogle Scholar
  12. Dougherty, D. A. Science 271: 163–168 (1996).PubMedGoogle Scholar
  13. Edelman, E. R., E. Mathiowitz, R. Langer and M. Klagsbrun. Biomaterials 12: 619–626 (1991).PubMedGoogle Scholar
  14. Fernandez-Carneado, J., M. J. Kogan, S. Pujals and E. Giralt. Biopolymers 76: 196–203 (2004).PubMedGoogle Scholar
  15. Fernandez-Lopez, S., H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen and M. R. Ghadiri. Nature 414: 329–329 (2001).Google Scholar
  16. Fields, G. B. and R. L. Noble. Int. J. Pept. Protein. Res. 35: 161–214 (1990).PubMedGoogle Scholar
  17. Gallivan, J. P. and D. A. Dougherty. Proc. Natl. Acad. Sci. USA 96: 9459–9464 (1999).PubMedGoogle Scholar
  18. Ghadiri, M. R., J. R. Granja and L. K. Buehler. Nature 369: 301–304 (1994).PubMedGoogle Scholar
  19. Ghadiri, M. R., J. R. Granja, R. A. Milligan, D. E. McRee and N. Khazanovich. Nature 366: 324–327 (1993).PubMedGoogle Scholar
  20. Graham, N. B. Med. Device. Technol. 9: 18–22 (1998).PubMedGoogle Scholar
  21. Hartgerink, J. D., E. Beniash and S. I. Stupp. Science 294: 1684–1688 (2001).PubMedGoogle Scholar
  22. Hartgerink, J. D., J. R. Granja, R. A. Milligan and M. R. Ghadiri. J. Am. Chem. Soc. 118: 43–50 (1996).Google Scholar
  23. Hersel, U., C. Dahmen and H. Kessler. Biomaterials 24: 4385–4415 (2003).PubMedGoogle Scholar
  24. Hokugo, A., Y. Sawada, K. Mushimoto, S. Morita and Y. Tabata. Journal of Hard Tissue Biology 14: 288–290 (2005).Google Scholar
  25. Holland, T. A., Y. Tabata and A. G. Mikos. J. Control. Release 91: 299–313 (2003).PubMedGoogle Scholar
  26. Hollister, S. J. Nat Mater 4: 518–524 (2005).PubMedGoogle Scholar
  27. Holmes, T. C., S. de Lacalle, X. Su, G. S. Liu, A. Rich and S. G. Zhang. P. Natl. Acad. Sci. USA 97: 6728–6733 (2000).Google Scholar
  28. Hubbell, J. A. Bio-Technol. 13: 565–576 (1995).Google Scholar
  29. Hubbell, J. A. Curr Opin Biotechnol. 10: 123–129 (1999).PubMedGoogle Scholar
  30. Hubbell, J. A. Curr Opin Biotechnol. 14: 551–558 (2003).PubMedGoogle Scholar
  31. Hubbell, J. A., S. P. Massia, N. P. Desai and P. D. Drumheller. Biotechnology (N Y) 9: 568–572 (1991).Google Scholar
  32. Hudalla, G. A. and W. L. Murphy. American Chemical Society PMSE preprints (2007).Google Scholar
  33. Humphries, M. J. Curr. Opin. Cell. Biol. 8: 632–640 (1996).PubMedGoogle Scholar
  34. Hutmacher, D. W. J. Biomater. Sci. Polym. Ed. 12: 107–124 (2001).Google Scholar
  35. Israelachvili, J. N. Intermolecular and Surface Forces. London: Academic Press (1991).Google Scholar
  36. Jeffrey, G. A. An Introduction to Hydrogen Bonding (Topics in Physical Chemistry). New york: Oxford University Press (1997).Google Scholar
  37. Kellis, J. T., Jr., K. Nyberg, D. Sali and A. R. Fersht. Nature 333: 784–786 (1988).PubMedGoogle Scholar
  38. Keren, K., R. S. Berman, E. Buchstab, U. Sivan and E. Braun. Science 302: 1380–1382 (2003).PubMedGoogle Scholar
  39. Kim, J., S. Nayak and L. A. Lyon. J. Am. Chem. Soc. 127: 9588–9592 (2005).PubMedGoogle Scholar
  40. Kojima, K., R. A. Ignotz, T. Kushibiki, K. W. Tinsley, Y. Tabata and C. A. Vacanti. J. Thorac. Cardiovasc. Surg. 128: 147–153 (2004).PubMedGoogle Scholar
  41. Kollman, P. A. Accounts of Chemical Research 10: 365–371 (1977).Google Scholar
  42. Kulkarni, S., C. Schilli, B. Grin, A. H. E. Muller, A. S. Hoffman and P. S. Stayton. Biomacromolecules 7: 2736–2741 (2006).PubMedGoogle Scholar
  43. Langer, R. and D. A. Tirrell. Nature 428: 487–492 (2004).PubMedGoogle Scholar
  44. Loweth, C. J., W. B. Caldwell, X. G. Peng, A. P. Alivisatos and P. G. Schultz. Angew. Chem. Int. Edit. 38: 1808–1812 (1999).Google Scholar
  45. Lutolf, M. P. and J. A. Hubbell. Nat. Biotechnol. 23: 47–55 (2005).PubMedGoogle Scholar
  46. Lutolf, M. P., G. P. Raeber, A. H. Zisch, N. Tirelli and J. A. Hubbell. Adv. Mater. 15: 888 (2003a).Google Scholar
  47. Lutolf, M. P., F. E. Weber, H. G. Schmoekel, J. C. Schense, T. Kohler, R. Muller and J. A. Hubbell. Nat. Biotechnol. 21: 513–518 (2003b).PubMedGoogle Scholar
  48. Ma, J. C. and D. A. Dougherty. Chemical. Reviews 97: 1303–1324 (1997).PubMedGoogle Scholar
  49. Maeda, Y., H. Tabata and T. Kawai. Appl. Phys. Lett. 79: 1181–1183 (2001).Google Scholar
  50. Maheshwari, G., G. Brown, D. A. Lauffenburger, A. Wells and L. G. Griffith. J. Cell. Sci. 113 (Pt 10): 1677–1686 (2000).PubMedGoogle Scholar
  51. Mahler, A., M. Reches, M. Rechter, S. Cohen and E. Gazit. Adv. Mater. 18: 1365–1370 (2006).Google Scholar
  52. Martin, B. R., D. J. Dermody, B. D. Reiss, M. M. Fang, L. A. Lyon, M. J. Natan and T. E. Mallouk. Adv. Mater. 11: 1021–1025 (1999).Google Scholar
  53. Massia, S. P. and J. A. Hubbell. J. Cell. Biol. 114: 1089–1100 (1991).PubMedGoogle Scholar
  54. McGaughey, G. B., M. Gagne and A. K. Rappe. J. Biol. Chem. 273: 15,458–15,463 (1998).PubMedGoogle Scholar
  55. Michaels, A. S. Journal of Industrial and Engineering Chemistry 57: 32–40 (1965).Google Scholar
  56. Mirkin, C. A. Inorg. Chem. 39: 2258–2272 (2000).PubMedGoogle Scholar
  57. Miyata, T., N. Asami and T. Uragami. Nature 399: 766–769 (1999).PubMedGoogle Scholar
  58. Mould, A. P., A. Komoriya, K. M. Yamada and M. J. Humphries. J. Biol. Chem. 266: 3579–3585 (1991).PubMedGoogle Scholar
  59. Mucic, R. C., J. J. Storhoff, C. A. Mirkin and R. L. Letsinger. J. Am. Chem. Soc. 120: 12,674–12,675 (1998).Google Scholar
  60. Narmoneva, D. A., O. Oni, A. L. Sieminski, S. G. Zhang, J. P. Gertler, R. D. Kamm and R. T. Lee. Biomaterials 26: 4837–4846 (2005).PubMedGoogle Scholar
  61. Nugent, M. A. and E. R. Edelman. Biochemistry-Us 31: 8876–8883 (1992).Google Scholar
  62. Okamoto, T., Y. Yamamoto, M. Gotoh, C. L. Huang, T. Nakamura, Y. Shimizu, Y. Tabata and H. Yokomise. J. Thorac. Cardiovasc. Surg. 127: 329–334 (2004).PubMedGoogle Scholar
  63. Ozeki, M. and Y. Tabata. J. Biomater. Sci. Polym. Ed. 17: 139–150 (2006a).PubMedGoogle Scholar
  64. Ozeki, M. and Y. Tabata. J. Biomater. Sci. Polym. Ed. 17: 163–175 (2006b).PubMedGoogle Scholar
  65. Palecek, S. P., J. C. Loftus, M. H. Ginsberg, D. A. Lauffenburger and A. F. Horwitz. Nature 385: 537–540 (1997).PubMedGoogle Scholar
  66. Pandya, M. J., G. M. Spooner, M. Sunde, J. R. Thorpe, A. Rodger and D. N. Woolfson. Biochemistry-Us 39: 8728–8734 (2000).Google Scholar
  67. Petka, W. A., J. L. Harden, K. P. McGrath, D. Wirtz and D. A. Tirrell. Science 281: 389–392 (1998).PubMedGoogle Scholar
  68. Pierschbacher, M. D. and E. Ruoslahti. Nature 309: 30–33 (1984).PubMedGoogle Scholar
  69. Pochan, D. J., J. P. Schneider, J. Kretsinger, B. Ozbas, K. Rajagopal and L. Haines. J. Am. Chem. Soc. 125: 11,802–11,803 (2003).PubMedGoogle Scholar
  70. Pratt, A. B., F. E. Weber, H. G. Schmoekel, R. Muller and J. A. Hubbell. Biotechnol. Bioeng. 86: 27–36 (2004).PubMedGoogle Scholar
  71. Richardson, T. P., M. C. Peters, A. B. Ennett and D. J. Mooney. Nat. Biotechnol. 19: 1029–1034 (2001).PubMedGoogle Scholar
  72. Ruoslahti, E. Annu. Rev. Cell. Dev. Bi. 12: 697–715 (1996).Google Scholar
  73. Ryadnov, M. G. and D. N. Woolfson. Nat. Mater. 2: 329–332 (2003).PubMedGoogle Scholar
  74. Sakiyama-Elbert, S. E. and J. A. Hubbell. J. Control. Release 65: 389–402 (2000).PubMedGoogle Scholar
  75. Sakiyama-Elbert, S. E. and J. A. Hubbell. Ann. Rev. Mater. Res. 31: 183–201 (2001).Google Scholar
  76. Salvay, D. M. and L. D. Shea. Mol. Biosyst. 2: 36–48 (2006).PubMedGoogle Scholar
  77. Santoso, S., W. Hwang, H. Hartman and S. G. Zhang. Nano. Lett. 2: 687–691 (2002).Google Scholar
  78. Scheiner, S. Hydrogen Bonding: A Theoretical Perspective. New York: Oxford University Press. (1997).Google Scholar
  79. Schlaepfer, D. D., S. K. Hanks, T. Hunter and P. van der Geer. Nature 372: 786–791 (1994).PubMedGoogle Scholar
  80. Schneider, J. P., D. J. Pochan, B. Ozbas, K. Rajagopal, L. Pakstis and J. Kretsinger. J. Am. Chem. Soc. 124: 15,030–15,037 (2002).PubMedGoogle Scholar
  81. Seal, B. L. and A. Panitch. Biomacromolecules 4: 1572–1582 (2003).PubMedGoogle Scholar
  82. Seeman, N. C. J. Theor. Biol. 99: 237–247 (1982).PubMedGoogle Scholar
  83. Seeman, N. C. Nature 421: 427–431 (2003).PubMedGoogle Scholar
  84. Shim, M., N. W. S. Kam, R. J. Chen, Y. M. Li and H. J. Dai. Nano lett. 2: 285–288 (2002).Google Scholar
  85. Silva, G. A., C. Czeisler, K. L. Niece, E. Beniash, D. A. Harrington. J. A. Kessler and S. I. Stupp. Science 303: 1352–1355 (2004).PubMedGoogle Scholar
  86. Spolar, R. S., J. H. Ha and M. T. Record, Jr. Proc. Natl. Acad. Sci. USA 86: 8382–8385 (1989).PubMedGoogle Scholar
  87. Stayton, P. S., T. Shimoboji, C. Long, A. Chilkoti, G. H. Chen, J. M. Harris and A. S. Hoffman. Nature 378: 472–474 (1995).PubMedGoogle Scholar
  88. Stupp, S. I. and P. V. Braun. Science 277: 1242–1248 (1997a).PubMedGoogle Scholar
  89. Stupp, S. I., V. V. LeBonheur, K. Walker, L. S. Li, K. E. Huggins, M. Keser and A. Amstutz. Science 276: 384–389 (1997b).PubMedGoogle Scholar
  90. Tabata, Y. Tissue Eng 9Suppl 1: S5–15 (2003).PubMedGoogle Scholar
  91. Tabata, Y. and Y. Ikada. Biomaterials 20: 2169–2175 (1999).PubMedGoogle Scholar
  92. Tae, G., M. Scatena, P. S. Stayton and A. S. Hoffman. J. Biomat. Sci-Polym. E. 17: 187–197 (2006).Google Scholar
  93. Tanihara, M., Y. Suzuki, E. Yamamoto, A. Noguchi and Y. Mizushima. J. Biomed. Mater. Res. 56: 216–221 (2001).PubMedGoogle Scholar
  94. Taylor, S. J., J. W. McDonald and S. E. Sakiyama-Elbert. J. Control. Release. 98: 281–294 (2004).PubMedGoogle Scholar
  95. Taylor, S. J., E. S. Rosenzweig, J. W. McDonald and S. E. Sakiyama-Elbert. J. Control. Release 113: 226–235 (2006).PubMedGoogle Scholar
  96. Taylor, S. J. and S. E. Sakiyama-Elbert. J. Control. Release 116: 204–210 (2006).PubMedGoogle Scholar
  97. Tirrell, M. Aiche. J. 51: 2386–2390 (2005).Google Scholar
  98. Torimoto, T., M. Yamashita, S. Kuwabata, T. Sakata, H. Mori and H. Yoneyama. J. Phys. Chem. B 103: 8799–8803 (1999).Google Scholar
  99. Tu, R. S. and M. Tirrell. Adv. Drug. Deliv. Rev. 56: 1537–1563 (2004).PubMedGoogle Scholar
  100. Vauthey, S., S. Santoso, H. Gong, N. Watson and S. Zhang. Proc. Natl. Acad. Sci. USA 99: 5355–5360 (2002).PubMedGoogle Scholar
  101. Vlodavsky, I., Z. Fuks, R. Ishaimichaeli, P. Bashkin, E. Levi, G. Korner, R. Barshavit and M. Klagsbrun. J. Cell. Biochem. 45: 167–176 (1991).PubMedGoogle Scholar
  102. Voet, D., J. G. Voet and C. W. Pratt Fundamentals of Biochemistry. Wiley (2001).Google Scholar
  103. Vukicevic, S., F. P. Luyten, H. K. Kleinman and A. H. Reddi. Cell 63: 437–445 (1990).PubMedGoogle Scholar
  104. Wang, C., R. J. Stewart and J. Kopecek. Nature 397: 417–420 (1999).PubMedGoogle Scholar
  105. West, J. L. and J. A. Hubbell. Macromolecules 32: 241–244 (1999).Google Scholar
  106. Whitesides, G. M. and B. Grzybowski. Science 295: 2418–2421 (2002).PubMedGoogle Scholar
  107. Whitesides, G. M., J. P. Mathias and C. T. Seto. Science 254: 1312–1319 (1991).PubMedGoogle Scholar
  108. Willerth, S. M., P. J. Johnson, D. J. Maxwell, S. R. Parsons, M. E. Doukas and S. E. Sakiyama-Elbert. J. Biomed. Mater. Res. A 80: 13–23 (2007).PubMedGoogle Scholar
  109. Wissink, M. J. B., R. Beernink, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van Aken and J. Feijen. J. Control. Release 64: 103–114 (2000a).PubMedGoogle Scholar
  110. Wissink, M. J. B., R. Beernink, N. M. Scharenborg, A. A. Poot, G. H. M. Engbers, T. Beugeling, W. G. van Aken and J. Feijen. J. Control. Release 67: 141–155 (2000b).PubMedGoogle Scholar
  111. Yamaguchi, N., B. S. Chae, L. Zhang, K. L. Kiick and E. M. Furst. Biomacromolecules 6: 1931–1940 (2005).PubMedGoogle Scholar
  112. Yamaguchi, N. and K. L. Kiick. Biomacromolecules 6: 1921–1930 (2005).PubMedGoogle Scholar
  113. Yan, H. Science 306: 2048–2049 (2004).PubMedGoogle Scholar
  114. Yeates, T. O. and J. E. Padilla. Curr. Opin. Struc. Biol. 12: 464–470 (2002).Google Scholar
  115. Yokoi, H., T. Kinoshita and S. G. Zhang. P. Natl. Acad. Sci. USA 102: 8414–8419 (2005).Google Scholar
  116. Yurke, B., A. J. Turberfield, A. P. Mills, Jr., F. C. Simmel and J. L. Neumann. Nature 406: 605–608 (2000).PubMedGoogle Scholar
  117. Zhang, L., E. M. Furst and K. L. Kiick. J. Control Release 114: 130–142 (2006).PubMedGoogle Scholar
  118. Zhang, S. Nat. Biotechnol 21: 1171–1178 (2003).PubMedGoogle Scholar
  119. Zhang, S. and A. Rich. Proc. Natl. Acad. Sci. U S A 94: 23–28 (1997).PubMedGoogle Scholar
  120. Zhao, X. J. and S. G. Zhang. Adv. Polym. Sci. 145–170 (2006).Google Scholar
  121. Zisch, A. H., M. P. Lutolf, M. Ehrbar, G. P. Raeber, S. C. Rizzi, N. Davies, H. Schmokel, D. Bezuidenhout, V. Djonov, P. Zilla and J. A. Hubbell. Faseb. J. 17: 2260–2262 (2003).PubMedGoogle Scholar

Copyright information

© Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Department of PharmacologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of Materials Science and EngineeringUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations