Advertisement

T

  • Axel M. Gressner
  • Torsten Arndt
Chapter
  • 4k Downloads

Literatur

  1. Taylor PJ, Jones A, Balderson GA et al (1996) Sensitive, specific quantitative analysis of tacrolimus (FK506) in blood by liquid chromatography-electrospray tandem mass spectrometry. Clin Chem 42:279–285PubMedGoogle Scholar
  2. Armstrong VW, Schütz E, Oellerich M (1999) Drug Monitoring nach Organtransplantation. In: Bruhn HD, Fölsch UR (Hrsg) Lehrbuch der Labormedizin. Schattauer, Stuttgart S 124–131Google Scholar
  3. Hallmann L (1980) Klinische Chemie und Mi-kroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  4. Taylor WJ, Diers Caviness MH (1986) A textbook for the clinical application of therapeutic drug monitoring. Abbot, IrvingGoogle Scholar
  5. Tamm I, Horsfall FL (1952) A Mucoprotein Derived from Human Urine which Reacts with Influenca, Mumps, and Newcastle Disease Viruses J Exper Med 95:71–96Google Scholar
  6. McQueen EG (1962) The Nature of Urinary Casts. J Clin Pathol 15:367–373PubMedGoogle Scholar
  7. Serafini-Cessi F, Malagolini N, Cavallone D (2003) Tamm-Horsfall Glycoprotein: Biology and Clinical Relevance. Am J Kidney Dis 42:658–676PubMedGoogle Scholar
  8. Raffael A, Nebe Th, Valet G (1994) Grundlagen der Durchflusszytometrie. In: Schmitz G, Rothe G (Hrsg) Durchflusszytometrie in der klinischen Zelldiagnostik. Schattauer Verlag, Stuttgart, S 11Google Scholar
  9. Tindall KR, Kunkel TA (1988) Fidelity of DNA Synthesis by the thermus aquaticus DNA Polymerase. Biochemistry 27:6008–6013PubMedGoogle Scholar
  10. Koeppen KM, Heller S (1991) Differentialblut-bild (panoptische Farbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 173–174Google Scholar
  11. Breathnach R, Chambon P (1981) Organization and Expression of Eukaryotic Split Genes Coding for Proteins. Ann Rev Biochem 50:349–383PubMedGoogle Scholar
  12. Stein J, Wehrmann T (Hrsg) (2002) Funktions-diagnostik in der Gastroenterologie. Springer-Verlag, HeidelbergGoogle Scholar
  13. Olesen H, Kenny D, Dybkaer R et al (1997) Properties and units in the clinical laboratory sciences: Part IX Coding systems-structures and guidelines. Pure Appl Chem 69:2607–2620Google Scholar
  14. Lappenberg-Pelzer M (1995) Basiche Substan-zen. In: Gibitz HJ, Schütz H (Hrsg) Einfache toxikologi-sche Laboratoriumsuntersuchungen bei akuten Vergif-tungen. VCH, Weinheim, S 155–167Google Scholar
  15. Wellhöner HH (1997) Pharmakologie und Toxikologie. 6. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  16. Lewin B (1998) Molekularbiologie der Gene. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  17. Burch GH, Gong Y, Liu W et al (1997) Tenascin-X deficiency is associated with Ehlers-Danlos syndrome. Nat Genet 17:5–7Google Scholar
  18. Dueck M, Riedl S, Hinz U et al (1999) Detection of tenascin-C isoforms in colorectal mucosa, ulcerative colitis, carcinomas and liver metastases. Int J Cancer 82:477–483PubMedGoogle Scholar
  19. Sampson J, Wong L, Harris OD (1982) The role of Tennessee antigen in the diagnosis of gastrointestinal malignancy. Aust N Z J Surg 52:39–41PubMedGoogle Scholar
  20. Stamm D, Büttner J (1995) Klinisch-chemische Untersuchungen und Befunde als Grundlage ärztlicher Handlungen. In: Greiling A, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  21. Armitage P, Colton Th (1998) Encyclopedia of Biostatistics. Wiley, New YorkGoogle Scholar
  22. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  23. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  24. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  25. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  26. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  27. Miller KK et al (2004) Measurement of Free Testosterone in Normal Women and Women with Androgen Deficiency: Comparison of Methods. J Clin Endocrinol Metab 89:525–533PubMedGoogle Scholar
  28. Wilke TJ, Utley DJ (1987) Total Testosterone, Free-Androgen Index, Calculated Free Testosterone, and Free Testosterone by Analog RIA Compared in Hirsute Women and in Otherwise-Normal Women with Altered Binding of Sex-Hormone-Binding Globulin. Clin Chem 33:1372–1375PubMedGoogle Scholar
  29. Gassier N, Peuschel T, Pankau R (2000) Pediatric Reference Values of Estradiol, Testosterone, Lutropin, Follitropin and Prolactin. Clin Lab 46:553–560Google Scholar
  30. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  31. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  32. Hilgers R-D, Bauer P, Scheiber V (2002) Einführung in die Medizinische Statistik. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  33. Oliver G (1883) On Bedside Urine Testing. Lancet I 1883:139–140,190-192Google Scholar
  34. Maumené EJ (1850) Sur un nouveau réactif pour distinguer la présence du sucre dans certain liquides. Compt Rend Hebt Seances Acad Sci 30:314–315Google Scholar
  35. Voswinckel P (1994) A Marvel of Color and Ingredients. The Story of Urine Test Strips. Kidney Int 46(Suppl)47:3–7Google Scholar
  36. Hubl W, Thomas L (2005) Renin-Angiotensin-Aldosteron-System. In: Thomas L (Hrsg) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1406–1425Google Scholar
  37. Abdelhamid S, Blomer R, Hommel G et al (2003) Urinary Tetrahydroaldosterone as a Screening Method for Primary Aldosteronism: A Comparative Study. Am J Hypertens 16:522–530PubMedGoogle Scholar
  38. Pragst F, Hallbach J, Geldmacher-von Mallinckrodt, M et al (2002) Thallium. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 525–531Google Scholar
  39. Kulpmann WR (2002) Broncholytika. In: Külp-mann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 251–253Google Scholar
  40. Külpmann WR (1991) Drug Monitoring. Diagnose und Labor 41: 55–62Google Scholar
  41. Wellhoner HH (1997) Pharmakologie und Toxikologie. 6. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  42. Wellhöner HH (1997) Pharmakologie und Toxikologie. 6. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  43. Külpmann WR (1991) Drug Monitoring. Diagnose und Labor 41:55–62Google Scholar
  44. Meagher EA, FitzGerald GA (2000) Indices of lipid peroxidation in vivo: strengths and limitations. Free Radic Biol Med 28:1745–1750PubMedGoogle Scholar
  45. Weinshilboum RM, Sladek SL (1980) Mercaptopurine Fharmacogenetics: Monogenic Inheritance of Erythrocyte Thiopurine Methyltransferase Activity. Am J Hum Genet 32:651–662PubMedGoogle Scholar
  46. Tai HL, Krynetski EY, Schuetz EG et al (1997) Enhanced Proteolysis of Thiopurine S-Methyltransferase (TPMT) Encoded by Mutant Alleles in Humans (TPMT*3A, TPMT*2): Mechanisms for the Genetic Polymorphism of TPMT Activity. Proc Natl Acad Sci USA 94:6444–6449PubMedGoogle Scholar
  47. Voswinckel P (1989) Zum Abschied von der Thormählen-Reaktion beim Melanom. Neue Kenntnisse über den frühverstorbenen Dr. med. Johannes Thormählen (1860-1892). J Clin Chem Clin Biochem 27:253–259PubMedGoogle Scholar
  48. Thorn W (1949) Recent Progr Hormone Res 4:229Google Scholar
  49. Beishuizen A, Vermes I (1999) Relative Eosinophilia (Thorn Test) as a Bioassay to Judge the Clinical Relevance of Cortisol Values during Severe Stress. J Clin Endocrinol Metab 84:3400PubMedGoogle Scholar
  50. Rohrer T, Gassmann K, Pohlenz J, Dorr HG (2002) Resistance to thyroid hormone goiter and attention deficit-hyperactivity disorder as main manifestation. Dtsch Med Wochenschr 127(23):1250–2PubMedGoogle Scholar
  51. Usala SJ, Tennyson GE, Bale AE, Lash RW, Gesundheit N, Wondisford FE, Accili D, Hauser P, Weintraub BD (1990) A base mutation of the C-erbA beta thyroid hormone receptor in a kindred with generalized thyroid hormone resistance. Molecular heterogeneity in two other kindreds. J Clin Invest 85(l):93–100PubMedGoogle Scholar
  52. Calatzis A, Heesen M, Spannagl M (2003) Patientennahe Sofortdiagnostik von Hämostaseveränderungen in der Anästhesie und Intensivmedizin. Anaesthesist 52:229–237PubMedGoogle Scholar
  53. Ofosu FA (2003) Protease activated receptors 1 and 4 govern the responses of human platelets to thrombin. Transfus Apher Sci 28:265–268PubMedGoogle Scholar
  54. Barthels M, von Depka M (2003) Das Gerinnungskompendium. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  55. Esmon CT (2003) The Protein C Pathway. CHEST 124:26S–32SPubMedGoogle Scholar
  56. Barthels M, Depka M (2003) Gerinnungskompendium. Georg Thieme Verlag, StuttgartGoogle Scholar
  57. Barthels M, Depka M (2002) Gerinnungskompendium. Georg ThiemeVerlag, StuttgartGoogle Scholar
  58. Barthels M (2004) Gerinnungsdiagnostik Hämostaseologie 24:123–135Google Scholar
  59. Kausshansky K (2003) Thrombopoietin: a tool for the understanding thrombopoiesis. J Thromb Haemost 1:1587–1592Google Scholar
  60. Adams JC, Lawler J (2004) The thrombospondins. Int J Biochem Cell Biol 36:961–8PubMedGoogle Scholar
  61. Bornstein P (2001) Thrombospondins as matricellular modulators of cell function. J Clin Invest 107:929–934PubMedGoogle Scholar
  62. Thomas L (1998) Thrombozytenzahl. In: Thomas L (Hrsg) Labor und Diagnose. 5. Aufl. TH Books Verlagsgesellschaft, Frankfurt, S 509–516Google Scholar
  63. Kehrel BF (2003) Blutplättchen: Biochemie und Physiologie. Hämostaseologie 4:149–158Google Scholar
  64. Ruggeri ZM (2000) Old Concepts and New Developments in the Study of Platelet Aggregation. J Clin Invest 105:699701Google Scholar
  65. Mueller-Eckhard C (1996) Transfusionsmedizin. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  66. Witt I (1995) Hamostase-und Fibrinolysesystem-Primäre Hämostase und Thrombozytenfunktion. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart, S 932–933Google Scholar
  67. Stieber P(1993)Tumormarker und ihr sinnvoller Einsatz. 2. Aufl.. Jürgen Hartmann Verlag, Marloffstein-RathsbergGoogle Scholar
  68. Thomas L (2005) Monoklonale Immunoglobuline. In Thomas L (Hrsg) Labor und Diagnose. 6.Aufl. TH-Books, Frankfurt/Main, 1085–1110Google Scholar
  69. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  70. Whitley RJ, Ain KB (2004) Thyroglobulin: A Specific Serum Marker for the Management of Thyroid Carcinoma. Clin Lab Med 24:29–47PubMedGoogle Scholar
  71. Schlumberger M, Berg G, Cohen O et al (2004) Follow-Up of Low-Risk Patients with Differentiated Thyroid Carcinoma: A European Perspective. Eur J Endocrinol 150:105–112PubMedGoogle Scholar
  72. Mazzaferri EL, Robbins RJ, Spencer CA et al (2003) A Consensus Report of the Role of Serum Thyroglobulin as a Monitoring Method for Low-Risk Patients with Papillary Thyroid Carcinoma. J Clin Endocrinol Metab 88:1433–1441PubMedGoogle Scholar
  73. Torrens JI, Burch HB (2001) Serum Thyroglobulin Measurement. Utility in Clinical Practice. Endocrinol Metab Clin North Am 30:429–467PubMedGoogle Scholar
  74. Gentile F, Conte M, Formisano S (2004) Thyroglobulin as an autoantigen: What we can learn about im-munopathogenecity from the correlation of antigenic properties with protein structure? Immunology 112:13–25PubMedGoogle Scholar
  75. Herbig J, Lange D, Elser H, Georgi P (1996) Methodical evaluation of immunoluminometric determination of thyroid peroxidase in serum. Nuklearmedizin 35:94–98PubMedGoogle Scholar
  76. Ohtaki S, Nakagawa H, Nakamura M, Kotani T (1996) Thyroid peroxidase: experimental and clinical integration. Endocrine J 43:1–14Google Scholar
  77. Lehnert H (Hrsg) (2003) Deutsche Gesellschaft für Endokrinologie: Rationelle Diagnstik und Therapie in Endokrinologie, Diabetologie und Stoffwechsel. 2. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  78. Demers LM, Spencer CA (2002) National Academy of Clinical Biochemistry, Washington (NACB)-Laboratory Medicine Practice Guideluines (LMPG)-Laboratory Support for the Diagnosis and Monitoring of Thyroid Disease. AACC Press, Washington DC. http://www.nacb.org/ Google Scholar
  79. Heuer H, Schafer MK, Bauer K (1999) Thyrotropin-Releasing Hormone (TRH), a Signal Peptide of the Central Nervous System. Acta Med Austriaca 26:119–122PubMedGoogle Scholar
  80. Thomas L (Hrsg) (2005) Labor und Diagnose. 6. Aufl. TH-Books, Frankfurt/Main, S 1376–1405Google Scholar
  81. Lehnert H (Hrsg) (2003) Deutsche Gesellschaft für Endokrinologie: Rationelle Diagnostik und Therapie in Endokrinologie, Diabetologie und Stofiwechsel. 2. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  82. Lehnert H (Hrsg) (2003) Deutsche Gesellschaft für Endokrinologie: Rationelle Diagnostik und Therapie in Endokrinologie, Diabetologie und Stoffwechsel. 2. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  83. Demers LM, Spencer CA (2002) National Academy of Clinical Biochemistry, Washington (NACB)-Laboratory Medicine Practice Guideluines (LMPG)-Laboratory Support for the Diagnosis and Monitoring of Thyroid Disease. AACC Press, Washington DC. http://www.nacb.org/ Google Scholar
  84. Blau N, Duran M, Blaskovics ME et al (eds) Physician's Guide to the Laboratory Diagnosis of Metabolic Diseases. 2nd edn. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  85. Käferstein H, Külpmann WR, Sticht G et al (2002) Tilidin. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 185–190Google Scholar
  86. Wild D (2001) The Immunoassay Handbook. Nature Publishing Group, New York, S 167–168Google Scholar
  87. Morrissey JH (2004) Tissue Factor: A Key Molecule in Hemostatic and Nonhemostatic Systems. Int J Hematol 79:103–108PubMedGoogle Scholar
  88. Price GC, Thompson SA, Kam PCA (2004) Tisue Factor and Tissue Factor Pathway Inhibitor. Anaesthesia 59:483–492PubMedGoogle Scholar
  89. Holten-Andersen MN, Christensen J, Nielsen HJ et al (2002) Total levels of tissue inhibitor of metalloproteinases 1 in plasma yield high diagnostic sensitivity and specificity in patients with colon cancer, Clin Cancer Res 8:156–164PubMedGoogle Scholar
  90. Schrohl AS, Holten-Andersen MN, Peters HA et al (2004) Tumor tissue levels of tissue inhibitor of metalloproteinase-1 as a prognostic marker in primary breast cancer, Clin Cancer Res 10:2289–2298PubMedGoogle Scholar
  91. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  92. Buccheri G, Ferrigno D (2001) Lung tumor markers of cytokeratin origin: an overview. Lung Cancer 34:65–69Google Scholar
  93. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC Press, Washington DCGoogle Scholar
  94. Stieber P, Dienemann H, Hasholzner U et al (1994) Comparison of CYFRA 21-1, TPA and TPS in lung cancer, urinary bladder cancer and benign diseases. Int J Biol Markers 9:82–88PubMedGoogle Scholar
  95. Bachmann F (2001) Plasminogen-Plasmin Enzym System. In: Colman RW, Hirsh J, Marder VJ et al (eds) Hemostasis and Thrombosis. Lippincott Williams & Wilkins, Philadelphia, pp 275–320Google Scholar
  96. Aarli JA, Stefansson K, Marton LS et al (1990) Patients with myasthenia gravis and thymoma have in their sera IgG autoantibodies against titin. Clin Exp Immunol 82:284–288PubMedGoogle Scholar
  97. Romi F, Skeie GO, Aarli JA et al (2000) Muscle autoantibodies in subgroups of myasthenia gravis patients. J Neurol 247:369–375PubMedGoogle Scholar
  98. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie. Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  99. Mondelli MU, Parks DE, Chisari FV (1991) Cellular kinetics of lymphocytes and plasma cells. In: Williams WJ, Beutler E, Erslev AJ et al (eds) Hematology. 4th edn. International edition, McGraw-Hill, New York, pp 945–949Google Scholar
  100. Taylor WJ, Diers Caviness MH (1986) A textbook for the clinical application of therapeutic drug monitoring. Abbott, IrvingGoogle Scholar
  101. Service FJ (1995) Hypoglycemic disorders. N Engl J Med 332:1144–1152PubMedGoogle Scholar
  102. Wellhöner HH (1997) Pharmakologie und To xikologie. 6. Aufl. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  103. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  104. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  105. Swirsky D, Bain BJ (2001) Erythrocyte and leukocyte cytochemistry-leukaemia classification. In: Lewis SM, Bain BJ, Bates I (eds) Dacie and Lewis Practical Haematology. 9th edn. Churchill Livingstone, London, S 288–289Google Scholar
  106. Swirsky D, Bain BJ (2001) Erythrocyte and leukocyte cytochemistry-leukaemia classification. In: Lewis SM, Bain BJ, Bates I (eds) Dacie and Lewis Practical Haematology. 9th edn. Churchill Livingstone, London, S 288–289Google Scholar
  107. DIN EN ISO 8402:1995 “Qualitätsmanagement und Qualitätssicherung-Begriffe”Google Scholar
  108. Büttner H (1967) Statistische Qualitatskontrolle in der Klinischen Chemie. Zeitschrift für Klinische Chemie und Klinische Biochemie 5:41–48PubMedGoogle Scholar
  109. Ettre LS (1993) Nomenclature for Chromatography. Pure Appl Chem 65:819–872Google Scholar
  110. Geldmacher-von Mallinckrodt M (1995) Toxikokinetik. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttart, S 1391–1397Google Scholar
  111. Forth W, Henschler D, Rummel W (1987) Allgemeine und spezielle Pharmakologie und Toxikologie. BI Wissenschaftsverlag, MannheimGoogle Scholar
  112. Käferstein H, Külpmann WR, Sticht G et al (2002) Tramadol. In: Külpmann WR (Hrsg) Klinisch-toxikologische Analytik. Wiley-VCH, Weinheim, S 190–196Google Scholar
  113. Koeppen KM, Heller S (1991) Differentialblutbild (panoptische Färbung). In: Boll I, Heller S (Hrsg) Praktische Blutzelldiagnostik. Springer-Verlag, Berlin Heidelberg New York, S 171–172Google Scholar
  114. Schmidt E, Schmidt FW (1978) Normwerte und Befundmuster bei Lebererkrankungen. Therapiewoche 28:1788–1799Google Scholar
  115. Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  116. Greiling H, Gressner AM (1994) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, Stuttgart New York, S 228–229Google Scholar
  117. Sherwood RA, Pippard MJ, Peters TJ (1998) Iron Homeostasis and the Assessment of Iron Status. Ann Chn Biochem 35:693–708Google Scholar
  118. Beguin Y (2003) Soluble Transferrin Receptor for the Evaluation of Erythropoiesis and Iron Status. Clin Chim Acta 329:9–22PubMedGoogle Scholar
  119. Feelders RA, Kuiper-Kramer EPA, van Eijk HG (1999) Structure, Function and Clinical Significance of Transferrin Receptors. Clin Chem Lab Med 37:1–10PubMedGoogle Scholar
  120. Wick M, Pinggera W, Lehmann P (2000) Eisenstoffwechsel, Anämien-Diagnostik und Therapie. 5. Aufl. Springer-Verlag, Wien New YorkGoogle Scholar
  121. Hartung J, Elpelt B, Klösener KH (1995) Statistik, Lehr-und Handbuch der angewandten Statistik. Oldenbourg Verlag, MünchenGoogle Scholar
  122. Hartung J, Elpelt B, Klösener KH (1995) Statistik, Lehr-und Handbuch der angewandten Statistik. Oldenbourg Verlag, MünchenGoogle Scholar
  123. Day S (1999) Dictionary for Clincal Trials. Wiley, New YorkGoogle Scholar
  124. Gressner AM, Weiskirchen R, Breitkopf K et al (2002) Roles of TGFβ in hepatic fibrosis. Frontiers in Bioscience 7:d793–d807PubMedGoogle Scholar
  125. Wang M (2005) The role of glucocorticoid action in the pathophysiology of the Metabolic Syndrome. Nutr Metab (Lond) 2(1):3Google Scholar
  126. Fernandez-Real JM, Pugeat M, Lopez-Bermejo A, Bornet H, Ricart W (2005) Corticosteroid-binding globulin affects the relationship between circulating adiponectin and cortisol in men and women. Metabolism 54:584–589PubMedGoogle Scholar
  127. Hörig H, Marincola E, Marincola MF (2005) Obstacles and opportunities in translational research. Nat Med 11:705–708PubMedGoogle Scholar
  128. Sonntag K-C (2005) Implementations of translational medicine. J Transl Med 3:33–35PubMedGoogle Scholar
  129. Löffler G, Hasilik A (2003) Zelluläre Organellen und Strukturen. In: Löffler G, Petrides P (Hrsg) Biochemie und Pathobiochemie. Springer-Verlag, Berlin Heidelberg New York, S 169–205Google Scholar
  130. Guder WG, da Fonseca-Wollheim F, Heil W et al. (2005) Die Qualität diagnostischer Proben. 5. Aufl. im Internet unter www.diagnostic sample.com (deutsch, englisch, spanisch) und als CD-Rom (englisch) in: Guder WG, Narayanan S, Wisser H, Zawta B (Hrsg) Samples: From the Patient the Laboratory. 3rd edn. Wiley-VCH, WeinheimGoogle Scholar
  131. Stamm D, Büttner J (1995) Beurteilung Klinisch-Chemischer Analysenergebnisse. In: Greiling H, Gressner AM (Hrsg) Lehrbuch der Klinischen Chemie und Pathobiochemie. 3. Aufl. Schattauer Verlag, StuttgartGoogle Scholar
  132. Voit R (1993) Plasma-Serum-Unterschiede und Lagerungsstabilität klinisch chemischer Messgrößen bei Verwendung von Plasmatrennröhrchen. Dissertation, München, Ludwig-Maximilians-UniversitätGoogle Scholar
  133. Steimer W (2004) Besondere Bedeutung der Präanalytik und Interpretation bei der Bestimmung von Arzneimittel-konzentrationen. Der Bay Int 24:147–157Google Scholar
  134. Ettre LS (1993) Nomenclature for Chromatography. Pure Appl Chem 65:819–872Google Scholar
  135. Hartoft-Nielsen ML, Lange M, Rasmussen AK et al (2004) Thyrotropin-releasing hormone stimulation test in patients with pituitary pathology. Horm Res 61:53–57PubMedGoogle Scholar
  136. Allahabadia A, Weetman AP (2003) Dynamic thyroid stimulating hormone tests: do they still have a role? J Endocrinol Invest. 26(7 Suppl):31–38PubMedGoogle Scholar
  137. Thomas L (2005) Labor und Diagnose, 6.Aufl. TH-Books, Frankfurt/Main, 1376–1405Google Scholar
  138. Lehnert H (Hrsg) (2003) Deutsche Gesellschaft für Endokrinologie: Rationelle Diagnostik und Therapie in Endokrinologie, Diabetologie und Stoffwechsel. 2. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  139. Lehnert H (Hrsg) (2003) Deutsche Gesellschaft für Endokrinologie: Rationelle Diagnostik und Therapie in Endokrinologie, Diabetologie und Stoffwechsel. 2. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  140. Demers LM, Spencer CA (2002) National Academy of Clinical Biochemistry, Washington (NACB)-Laboratory Medicine Practice Guideluines (LMPG)-Laboratory Support for the Diagnosis and Monitoring of Thyroid Disease. AACC Press, Washington DC. http://www.nacb.org/ Google Scholar
  141. Friberg L, Werner S, Eggertsen G et al (2002) Rapid Down-Regulation of Thyroid Hormones in Acute Myocardial Infarction: is it Cardioprotective in Patients with Angina? Arch Intern Med 162:1388–1394PubMedGoogle Scholar
  142. Sorvillo F, Mazziotti G, Carbone A et al (2003) Increased Serum Reverse Triiodothyronine Levels at Diagnosis of Hepatocellular Carcinoma in Patients with Compensated HCV-Related Liver Cirrhosis. Clin Endocrinol 58:207–212Google Scholar
  143. Trinder P (1954) Rapid determination of salicylate in biological fluids. Biochem. J. 57:301–303.PubMedGoogle Scholar
  144. Sonnenwirth AC, Jarett L (eds) (1980) Gradwohl’s clinical laboratory methods and diagnosis. CV Mosby, St. LouisGoogle Scholar
  145. Wells RD (1996) Molecular Basis of Genetic Instability of Triplet Repeats. J Biol Chem 271:2875–2878PubMedGoogle Scholar
  146. Nakamoto M, Nakano S, Kawashima S et al (2002) Unequal Crossing-Over in Unique PABP2 Mutations in Japanese Patients: A Possible Cause of Oculopharyngeal Muscular Dystrophy. Arch Neurol 59:474–477PubMedGoogle Scholar
  147. Hesse A, Jahnen A, Klocke K et al (1994) Nachsorge bei Harnstein-Patienten. Gustav Fischer Verlag, Jena StuttgartGoogle Scholar
  148. Guder WG (Übersetzer) (2003) Atlas des Harnsediments. CD-Rom. Chronolab, ZugGoogle Scholar
  149. Deutinger J (1994) The Triple Test. A Review. Gynäkol Geburtshilfliche Rundsch 34:71–78PubMedGoogle Scholar
  150. Neumann HG (2000) Ableitung von Grenzwerten (Standards)-Arbeitsplatz. In: Wichmann HE, Schlipköter HW, Fülgraff G (Hrsg) Handbuch der Umweltmedizin. ecomed Verlagsgesellschaft, Landsberg/Lech, III-1.3.9Google Scholar
  151. Nishikai M, Reichlin M (1980) Heterogeneity of precipitating antibodies in polymyositis and dermatomyositis. Characterization of the Jo-1 antibody system. Arthritis Rheum 23:881–888PubMedGoogle Scholar
  152. Bernstein RM, Morgan SH, Chapman J et al (1984) Anti Jo-1 antibody: a marker for myositis with interstitial lung disease. Br Med J 289:151–152Google Scholar
  153. Greiling H, Gressner AM (Hrsg) (1995) Lehrbuch der Klinischen Chemie und Pathobiochemie. Schattauer Verlag, Stuttgart New YorkGoogle Scholar
  154. Büttner J (1991) Urina ut signum: Zur historischen Entwicklung der Urin-Untersuchung. In: Guder WG, Lang H (Hrsg) Pathobiochemie und Funktionsdiagnostik der Niere. Springer-Verlag, Berlin Heidelberg New York, S 1–20Google Scholar
  155. Leybold K, Grabener E (1976) Praxis-Laboratorium.7. Aufl. Georg Thieme Verlag, StuttgartGoogle Scholar
  156. Seitz HM, Maier W (1994) Parasitologie-Plasmodien, Erreger der Malaria. In: Brandis H, Köhler W, Eggers HJ et al (Hrsg) Lehrbuch der Medizinischen Mikrobiologie. Gustav Fischer Verlag, Stuttgart, S 658–665Google Scholar
  157. Tietz NW (1997) Support of the diagnosis of pancreatitis by enzyme tests-old problems, new techniques. Clin Chim Acta 257:85–98PubMedGoogle Scholar
  158. Neoptolemos JP, Kemppainen EA, Mayer JM et al (2000) Early prediction of severity in acute pancreatitis by urinary trypsinogen activation peptide: a multicentre study. The Lancet 355:1955–1960Google Scholar
  159. Ludolph-Hauser D et al (1999) Tryptase, ein Marker für die Aktivierung und Lokalisation von Mastzellen. Hautarzt 50:556–561PubMedGoogle Scholar
  160. Klett M, Zabransky S (2001) Screening auf Hypothyreose bei Neugeborenen. In: Zabransky S (Hrsg) Screening auf angeborene endokrine und metabole Störungen. Springer Verlag, Wien New York, S 129–157Google Scholar
  161. Rees Smith B (2001) Thyroid autoantibodies. The Scandinavian Journal of Clinical & Laboratory Investigation Supplement 61:45–52Google Scholar
  162. Orgiazzi J (2000) Anti-TSH receptor antibodies in clinical practice. Endocrinology and Metabolism Clinics of North America 29:339–355PubMedGoogle Scholar
  163. Steblay RW, Rudofsky U (1971) Renal tubular disease and autoantibodies against tubular basement membrane induced in guinea pigs. J Immunol 107:589–594PubMedGoogle Scholar
  164. Diamandis E, Fritsche HA, Lilja H et al (2002) Tumor markers. Physiology, pathobiology, technology, and clinical applications. 1st edn. AACC press, Washington, DC, USAGoogle Scholar
  165. Hardt PD, Mazurek S, Toepler M et al (2004) Faecal tumour M2 pyruvate kinase: a new, sensitive screening tool for colorectal cancer. Br J Cancer 91:980–984PubMedGoogle Scholar
  166. Thomas L (Hrsg) (2005) Labor und Diagnose. TH-Books, Frankfurt/MainGoogle Scholar
  167. Papadakis KA, Targan SR (2000) Tumor necrosis factor: biology and therapeutic inhibitors. Gastroenterology 119:1148–1157PubMedGoogle Scholar
  168. De Beaux AC, Ross JA, Maingay JP et al (1996) Proinflammatory cytokine release by peripheral blood mononudear cells from patients with acute pancreatitis. Brit J Surgery 83:1071–1075Google Scholar
  169. Diagnostica MERCK (Hrsg.) (1986) Hämatologische Labormethoden, 4. Aufl. GIT Verlag, Darmstadt, S 21–22Google Scholar
  170. Hallmann L (1980) Klinische Chemie und Mikroskopie. 11. Aufl. Georg Thieme Verlag, Stuttgart New YorkGoogle Scholar
  171. Latscha HP, Linti GW, Klein HA (2004) Analytische Chemie Chemie-Basiswissen III. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  172. Lenmark A (1999) Type 1 diabetes. Clin Chem 45:1331–1338Google Scholar
  173. Barker JM, Barriga KJ, Yu L et al (2004) Prediction of auto-antibody positivity and progression to type 1 diabetes: Diabetes Autoimmunity Study in the Young (DAISY). J Clin Endocrinol Metab 89:3896–3902PubMedGoogle Scholar
  174. Bommhardt U, Beyer M, Hiinig T et al (2004) Molecular and cellular mechanisms of T cell development. Cell Mol Life Sci 61:263–280PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag Heidelberg 2007

Authors and Affiliations

  • Axel M. Gressner
    • 1
  • Torsten Arndt
    • 2
  1. 1.Institut für Klinische Chemie und Pathobiochemie -Zentrallaboratorium-Universitätsklinikum der RWTH AachenAachenGermany
  2. 2.Bioscientia Institut für Medizinische Diagnostik GmbHIngelheimGermany

Personalised recommendations